Experimental investigation of the seismic behaviour of panel buildings

Download
2003
Yüksel, S. Bahadır
Shear-wall dominant multi-story reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In 1999, two severe urban earthquakes struck Kocaeli and Düzce provinces in Turkey with magnitudes (Mw) 7.4 and 7.1, respectively. These catastrophes caused substantial structural damage, casualties and loss of lives. In the aftermath of these destructive earthquakes, neither demolished nor damaged shear-wall dominant buildings constructed by tunnel form techniques were reported. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code and the Turkish Seismic Code present limited information for their design criteria. This study presents experimental investigation of the panel unit having H-geometry. To investigate the seismic behavior of panel buildings, two prototype test specimens which have H wall design were tested at the Structural Mechanics Laboratory at METU. The experimental work involves the testing of two four-story, 1/5-scale reinforced concrete panel form building test specimens under lateral reversed loading, simulating the seismic forces and free vibration tests. Free vibration tests before and after cracking were done to assess the differences between the dynamic properties of uncracked and cracked test specimens. A moment-curvature program named Waller2002 for shear walls is developed to include the effects of steel strain hardening, confinement of concrete and tension strength of concrete. The moment-curvature relationships of panel form test specimens showed that walls with very low longitudinal steel ratios exhibit a brittle flexural failure with very little energy absorption. Shear walls of panel form test specimens have a reinforcement ratio of 0.0015 in

Suggestions

Modelling of strengthened hollow brick infills
BARAN, MEHMET; Ozcelik, Ramazan; Sevil, Tugce; Canbay, Erdem (2013-02-01)
Strengthening the existing hollow brick infill walls by bonding high-strength precast concrete panels or applying steel fibre reinforced mortar was found to be an occupant-friendly seismic retrofitting technique for the buildings in use with deficient reinforced concrete structural systems. Both techniques convert the existing non-structural hollow brick infill walls into load-carrying structural members. To verify the effectiveness of the techniques, 20 reinforced concrete frames with hollow brick infill w...
Seismic performance of multisimple-span bridges retrofitted with link slabs
Caner, Alp; Zia, P. (American Society of Civil Engineers (ASCE), 2002-03-01)
During earthquakes multisimple-span bridges are vulnerable to span separation at their expansion joints. A common way of preventing unseating of spans is to have cable or rod restrainers that provide connections between adjacent spans. Alternatively, dislocation of the girders can be controlled with a link slab that is the continuous portion of the bridge deck between simple spans. Seismic retrofit with link slab should be more cost-effective than the existing methods when it is performed during redecking o...
Estimation of fundamental periods of shear-wall dominant building structures
Balkaya, C; Kalkan, E (2003-06-01)
Shear-wall dominant multistorey reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code (International Conference of Building Officials, Whittier, CA, 1997) and the Turkish Seismic Code (Specification for Structures to be Built in Disaster Areas, ...
Calibration of Turkish LRFD bridge design code for slab on steel plate girders
Koç, A. Fatih; Caner, Alp; Yücemen, Mehmet Semih (IOS Press, 2013-01-01)
In Turkish design practice, slab on steel composite I-girder bridges have been designed to span between 50 and 80 meters. To date, modified versions of the AASHTOLFD (Load Factor Design) or ASD (Allowable Stress Design) requirements are adapted in Turkey. The recent switch of the U.S. bridge codes to Load Resistance Factor Design (LRFD) method also necessitates the calibration of the Turkish LRFD design code that is under development. In this on-going research, it has been determined that the current Turkis...
Seismic retrofitting of bridges by response modification techniques based on altering bearing fixities
Dicleli, Murat (Informa UK Limited, 2005-07-01)
Feasibility of a proposed seismic retrofitting technique for typical bridges in the Central US has been studied. The retrofitting technique is based on modifying the fixity conditions of the bearings for response modification purposes to eliminate the need for costly retrofitting of substructures. For this purpose, a seismically vulnerable bridge, typical of those in the Central US was selected. Detailed seismic analyses of the bridge were then conducted. It was found that its bearings, wing-walls and pier ...
Citation Formats
S. B. Yüksel, “Experimental investigation of the seismic behaviour of panel buildings,” Ph.D. - Doctoral Program, Middle East Technical University, 2003.