Scalar meson effects in radiative decays of vector mesons

2003
Kerman (Solmaz), Saime
The role of scalar mesons in radiative vector meson decays is investigated. The effects of scalar-isoscalar f_{0}(980) and scalar-isovector a_{0}(980) mesons are studied in the mechanism of the radiative Phi->pi{+}pi{-}gamma and phi->pi{0}eta gamma decays, respectively. A phenomenological approach is used to study the radiative phi->pi{+}p{-}gamma decay by considering the contributions of sigma-meson, rho-meson and f_{0}-meson. The interference effects between different contributions are analyzed and the branching ratio for this decay is calculated. The radiative phi->pi{0}eta gamma decay is studied within the framework of a phenomenological approach in which the contributions of rho-meson, chiral loop and a_{0}-meson are considered. The interference effects between different contributions are examined and the coupling constants g_{phi a_{0} gamma} and g_{a_{0}K{+}K{-}} are estimated using the experimental branching ratio for the phi->pi{0}eta gamma decay. Furthermore, the radiative rho{0}pi{+}pi{-}gammaÞ and rho{0}->pi{0}pi{0}gamma decays are studied to investigate the role of scalar-isoscalar sigma-meson. The branching ratios of the rho{0}->pi{+}pi{-}gamma and rho{0}->pi{0}pi{0}gamma decays are calculated using a phenomenological approach by adding to the amplitude calculated within the framework of chiral perturbation theory and vector meson dominance the amplitude of sigma-meson intermediate state. In all the decays studied the scalar meson intermediate states make important contributions to the overall amplitude.

Suggestions

Conformal black hole solutions of axidilaton gravity in D dimensions
Cebeci, H; Dereli, T (2002-02-15)
Static, spherically symmetric solutions of axidilaton gravity in D dimensions are given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant omega and an axion-dilaton coupling parameter k. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter family of black hole solutions in the scale-invariant limit.
Closed-form Green's functions for finite grounded dielectric substrate
Öğücü, Gölge; ALATAN, LALE; Aydın Çivi, Hatice Özlem (Informa UK Limited, 2005-02-01)
The approximate closed-form Green's functions of the vector and scalar potentials in the spatial domain are derived for a horizontal electric dipole placed over a finite grounded dielectric medium. The effects of the discontinuity at the edges are considered by including the surface wave reflections from the edges, which are obtained as a function of the incident angle by using the edge admittance concept. The closed-form expressions of the reflection coefficients are then derived by means of the generalize...
Radial motion of highly conducting sphere in magnetic field
Gurcan, OD; Mirnov, VV; Ucer, D (2000-05-01)
Radial motion of a highly conducting sphere in external magnetic field is considered. It both perturbs the external magnetic field and generates an electric field. Exact analytic solution has been obtained previously for a uniformly expanding sphere. In the present paper a new exact solution is derived which is valid not only for expansion but for contraction as well. It allows us to calculate analytically the total electromagnetic energy irradiated by the sphere involved in periodical radial motion with ar...
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Scalar sigma meson effects in radiative rho(0)-meson decays
Gokalp, A; Solmaz, S; Yılmaz, Osman (2003-04-01)
We study the radiative rho(0)-->pi(+)pi(-)gamma and rho(0)-->pi(0)pi(0)gamma decays and we calculate their branching ratios using a phenomenological approach by adding to the amplitude calculated within the framework of chiral perturbation theory and vector meson dominance the amplitude of sigma-meson intermediate state. Our results for the branching ratios are in good agreement with the experimental values.
Citation Formats
S. Kerman (Solmaz), “Scalar meson effects in radiative decays of vector mesons,” Ph.D. - Doctoral Program, Middle East Technical University, 2003.