Computer aided noise prediction in heating, ventilating and air conditioning systems

Download
2003
Güngör, Faruk Emre
This thesis aims at preparing a user-friendly software tool for the prediction and analysis of the noise generated in Heating, Ventilating and Air Conditioning (HVAC) Systems elaborating the standardized prediction formulae and data coming from the research studies. For the analysis portion of the software, different types of indoor noise criteria are introduced and implemented in the software to ease the investigation of the level and the quality of the sound perceived by the occupant in a room through such criteria. General software structure and implementation of HVAC elements are explained by different userinterface samples in the thesis. Several case studies are presented to demonstrate the capabilities of the tool prepared in VISUAL BASIC programming language within the scope of the study.

Suggestions

Sound power level prediction in ducted heating, ventilating and air conditioning systems
Yayladere, Cemil; Çalışkan, Mehmet; Department of Mechanical Engineering (2014)
The aim of this study is to develop user friendly software to predict and analyze noise levels in enclosed spaces due to Heating, Ventilating and Air Conditioning (HVAC) System. Sound sources and transmission mechanisms are investigated by the prediction formulae and data originated from research studies and standards. For the analysis portion of the software, through the implementation of HVAC elements, sound power levels at the ventilation system outlet are obtained. General software structure is explaine...
Numerical prediction of aft radiation of turbofan tones through exhaust jets
Özyörük, Yusuf (2009-08-07)
This paper describes a numerical methodology for calculating tonal noise propagation and radiation through turbomachinery exhaust ducts, including non-uniform background jet flows. The numerical method is based on solution of the linearized Euler equations directly in the frequency domain, employing a direct, sparse matrix solver in parallel. Acoustic sources are introduced into the computational domain via the perfectly matched layer equations. Various test cases including propagation through infinite duct...
A MEMS thermoelectric energy harvester for energy generation in mobile systems
Topal, Emre Tan; Külah, Haluk; Balkan, Raif Tuna; Department of Micro and Nanotechnology (2011)
In this thesis design, optimization, fabrication and performance characterization of MEMS thermoelectric (TE) energy harvesters for harnessing waste heat in mobile systems are presented. As a proof of concept, chromium and nickel are used as the thermoelectric material in the proposed design. The feasibility of the state of the art thermoelectric materials is also discussed. MEMS TE energy harvesters proposed in this study are designed to generate power at relatively lower ΔT values. The performance of the ...
Computational Design of Optical Couplers for Bended Nanowire Transmission Lines
Tuncyurek, Yunus Emre; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-07-01)
We present computational analysis, optimization, and design of optical couplers that can be useful to improve the transmission along bended nanowires. After demonstrating the deteriorated energy transmission due to sharp bends, which lead to out-of-phase nanowires and diffraction, we use a rigorous simulation environment to design efficient couplers made of spherical particles. For this purpose, an optimization module based on genetic algorithms is combined with the multilevel fast multipole algorithm, lead...
Parametric Study and Seasonal Simulations of a Solar Powered Adsorption Cooling System
Taylan, Onur; Baker, Derek Keıth; Kaftanoglu, Bilgin (2009-09-03)
Models of solar-thermal powered adsorption cooling systems with and without heat recovery developed in TRNSYS and results from steady-periodic and seasonal simulations are presented. A normalized model is presented and used to process the seasonal TRNSYS results to investigate the coincidence between the solar-supplied cooling power and cooling load as the relative sizes of the cooling system and storage are varied. The normalized model yields a seasonal solar fraction and seasonal loss fraction (the excess...
Citation Formats
F. E. Güngör, “Computer aided noise prediction in heating, ventilating and air conditioning systems,” M.S. - Master of Science, Middle East Technical University, 2003.