Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of the Jacobian evalution on direct solutions of the Euler equations
Download
index.pdf
Date
2003
Author
Onur, Ömer
Metadata
Show full item record
Item Usage Stats
181
views
0
downloads
Cite This
A direct method is developed for solving the 2-D planar/axisymmetric Euler equations. The Euler equations are discretized using a finite-volume method with upwind flux splitting schemes, and the resulting nonlinear system of equations are solved using Newton̕s Method. Both analytical and numerical methods are used for Jacobian calculations. Numerical method has the advantage of keeping the Jacobian consistent with the numerical flux vector without extremely complex or impractical analytical differentiations. However, numerical method may have accuracy problem and may need longer execution time. In order to improve the accuracy of numerical method detailed error analyses were performed. It was demonstrated that the finite-difference perturbation magnitude and computer precision are the most important parameters that affect the accuracy of numerical Jacobians. A relation was developed for optimum perturbation magnitude that can minimize the error in numerical Jacobians. Results show that very accurate numerical Jacobians can be calculated with optimum perturbation magnitude. The effects of the accuracy of numerical Jacobians on the convergence of flow solver are also investigated. In order to reduce the execution time for numerical Jacobian evaluation, flux vectors with perturbed flow variables are calculated for only related cells. A sparse matrix solver based on LU factorization is used for the solution, and to improve the Jacobian matrix solution some strategies are considered. Effects of different flux splitting methods, higher-order discretizations and several parameters on the performance of the solver are analyzed.
Subject Keywords
Aerospace engineering
,
Direct flow solution
,
2-D planar
URI
http://etd.lib.metu.edu.tr/upload/2/1098268/index.pdf
https://hdl.handle.net/11511/13777
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effects of the Jacobian evaluation on Newton's solution of the Euler equations
Onur, O; Eyi, Sinan (Wiley, 2005-09-20)
Newton's method is developed for solving the 2-D Euler equations. The Euler equations are discretized using a finite-volume method with upwind flux splitting schemes. Both analytical and numerical methods are used for Jacobian calculations. Although the numerical method has the advantage of keeping the Jacobian consistent with the numerical residual vector and avoiding extremely complex analytical differentiations, it may have accuracy problems and need longer execution time. In order to improve the accurac...
Effects of the Jacobian evaluation on Newton's solution of the Euler equations
Onur, O.; Eyi, Sinan (null; 2005-12-01)
A Newton's method is developed for solving the 2-D Euler equations. The Euler equations are discretized using a finite-volume method with upwind flux splitting schemes. Both analytical and numerical methods are used for Jacobian calculations. Although the numerical method has the advantage of keeping the Jacobian consistent with the numerical residual vector and avoiding extremely complex analytical differentiations, it may have accuracy problems and need longer execution time. In order to improve the accur...
Two-dimensional unsteady Navier-Stokes solution method with moving overset grids
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1997-03-01)
A simple numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across two-dimensional, structured overset grids is presented. Overset grids are allowed to move in time relative to each other. Intergrid boundary points are localized in a triangular stencil on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the intergrid boundary point. Numerical results are presented for steady ...
NEW FAMILY OF MODAL METHODS FOR CALCULATING EIGENVECTOR DERIVATIVES
AKGUN, MA (American Institute of Aeronautics and Astronautics (AIAA), 1994-02-01)
A new family of modal methods for the calculation of eigenvector derivatives in non-self-adjoint systems with a singular coefficient matrix is developed. The family contains the modal and modified modal methods as a subset. In the family, the component of the mth eigenvector in the expansion of the derivative of the jth eigenvector is multiplied by various powers of the eigenvalue ratio lambda(i)/lambda(m), thereby accelerating convergence. The family of methods is applied to a self-adjoint example problem,...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Onur, “Effect of the Jacobian evalution on direct solutions of the Euler equations,” M.S. - Master of Science, Middle East Technical University, 2003.