Facial feature extraction using deformable templates

Download
2003
Serçe, Hakan
The purpose of this study is to develop an automatic facial feature extraction system, which is able to identify the detailed shape of eyes, eyebrows and mouth from facial images. The developed system not only extracts the location information of the features, but also estimates the parameters pertaining the contours and parts of the features using parametric deformable templates approach. In order to extract facial features, deformable models for each of eye, eyebrow, and mouth are developed. The development steps of the geometry, imaging model and matching algorithms, and energy functions for each of these templates are presented in detail, along with the important implementation issues. In addition, an eigenfaces based multi-scale face detection algorithm which incorporates standard facial proportions is implemented, so that when a face is detected the rough search regions for the facial features are readily available. The developed system is tested on JAFFE (Japanese Females Facial Expression Database), Yale Faces, and ORL (Olivetti Research Laboratory) face image databases. The performance of each deformable templates, and the face detection algorithm are discussed separately.

Suggestions

Automatic segmentation of human facial tissue by MRI-CT fusion: A feasibility study
Kale, Emre H.; Mumcuoğlu, Ünal Erkan; HAMCAN, Salih (2012-12-01)
The aim of this study was to develop automatic image segmentation methods to segment human facial tissue which contains very thin anatomic structures. The segmentation output can be used to construct a more realistic human face model for a variety of purposes like surgery planning, patient specific prosthesis design and facial expression simulation. Segmentation methods developed were based on Bayesian and Level Set frameworks, which were applied on three image types: magnetic resonance imaging (MRI), compu...
Automatic Bayesian segmentation of human facial tissue using 3D MR-CT fusion by incorporating models of measurement blurring, noise and partial volume
Şener, Emre; Kanoğlu, Utku; Mumcuoğlu, Ünal Erkan; Department of Engineering Sciences (2012)
Segmentation of human head on medical images is an important process in a wide array of applications such as diagnosis, facial surgery planning, prosthesis design, and forensic identification. In this study, a new Bayesian method for segmentation of facial tissues is presented. Segmentation classes include muscle, bone, fat, air and skin. The method incorporates a model to account for image blurring during data acquisition, a prior helping to reduce noise as well as a partial volume model. Regularization ba...
Face classification with support vector machine
Kepenekci, B; Akar, Gözde (2004-04-30)
A new approach to feature based frontal face recognition with Gabor wavelets and support vector machines is presented in this paper. The feature points are automatically extracted using the local characteristics of each individual face. A kernel that computes the similarity between two feature vectors, is used to map the face features to a space with higher dimension. To find the identity of a test face, the possible labels of each feature vector of that face is found with support vector machines, then the ...
Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling
Şener, Emre; Mumcuoğlu, Ünal Erkan; Hamcan, Salih (2016-02-01)
Background: Accurate segmentation of human head on medical images is an important process in a wide array of applications such as diagnosis, facial surgery planning, prosthesis design, and forensic identification.
Investigation of the Effect of Face Regions on Local Shape Descriptor Based 3D Face Recognition
İNAN, TOLGA; Halıcı, Uğur (2013-04-26)
In this study, the effect of face regions on local shape descriptor based 3D face recognition was investigated. Our approach starts with calculation of the SIFT descriptors on the shape maps of the 3D faces. In the next phase, SIFT descriptors in the selected regions are concatenated to form feature vectors. Then these feature vectors are fed into linear discriminant analysis (LDA) for face recognition. In this study, faces are segmented into 47 regions and the descriptors in one or more regions are concate...
Citation Formats
H. Serçe, “Facial feature extraction using deformable templates,” M.S. - Master of Science, Middle East Technical University, 2003.