Control actuation systems and seeker units of an air-to-surface guided munition

Download
2003
Akkal, Elzem
This thesis proposes a modification to an air to surface guided munition (ASGM) from bang-bang control scheme to continuous control scheme with a little cost. In this respect, time domain system identification analysis is applied to the control actuation system (CAS) of ASGM in order to obtain its mathematical model and controller is designed using pulse width modulation technique. With this modification, canards would be deflected as much as it is commanded to. Seeker signals are also post-processed to obtain the angle between the velocity vector and target line of sight vector. The seeker is modeled using an artificial neural network. Non-linear flight simulation model is built using MATLAB Simulink and obtained seeker and CAS models are integrated to the whole flight simulation model having 6 degrees of freedom. As a flight control unit, fuzzy logic controller is designed, which is a suitable choice if an inertial measurement sensor will not be mounted on the munition. Finally, simulation studies are carried out in order to compare the performance of the أASGMؤ and أimproved ASGMؤ and the superiority of the new design is demonstrated.

Suggestions

Flight Evaluation of a Reactionary Envelope Protection System for UAVs
Unnikrishnan, Suraj; Prasad, J. V. R.; Yavrucuk, İlkay (2011-01-01)
This paper presents the development and flight test evaluation of a reactionary envelope protection method suitable for limit protection in uninhabited aerial vehicles (UAVs). The method is based on finite-time horizon predictions of limit parameter response for detecting any impending limit boundary violations. Limit violations are prevented by treating limit boundaries as obstacles and by correcting nominal control/command inputs to track safe-response profiles of limit parameters near the limit boundarie...
Flight Evaluation of Reactionary Envelope Protection System
Yavrucuk, İlkay (2011-01-01)
This paper presents the development and flight test evaluation of a reactionary envelope protection method suitable for limit protection in uninhabited aerial vehicles (UAVs). The method is based on finite‐time horizon predictions of limit parameter response for detecting any impending limit boundary violations. Limit violations are prevented by treating limit boundaries as obstacles and by correcting nominal control/command inputs to track safe‐response profiles of limit parameters near the limit boundarie...
Simulator based evaluation of adaptive envelope protection algorithms for active sidestick controllers
Ünal, Zeynep; Yavrucuk, İlkay; Department of Aerospace Engineering (2019)
In this thesis, a simulator environment with an active control system is developed for testing different force feedback maps for flight envelope limit avoidance. Previously developed flight envelope protection algorithm; named direct adaptive limit margin estimation method is improved with Single Hidden Layer Neural Network. Neural network based adaptive models are developed online using concurrent learning algorithm for weight update laws. Concurrent learning method uses both current data and recorded past...
Flight simulation and control of a helicopter
Erçin, Gülsüm Hilal; Tekinalp, Ozan; Department of Aerospace Engineering (2008)
In this thesis the development of a nonlinear simulation model of a utility helicopter and the design of its automatic flight control system is addressed. In the first part of this thesis, the nonlinear dynamic model for a full size helicopter is developed using the MATLAB/SIMULINK environment. The main rotor (composed of inflow and flapping dynamics parts), tail rotor, fuselage, vertical stabilizer, horizontal stabilizer of the helicopter are modeled in order to obtain the total forces and moments needed f...
Adaptive roll control of guided munitions
Öveç, Naz Tuğçe; Kutay, Ali Türker; Department of Aerospace Engineering (2016)
This thesis presents an adaptive roll control scheme for guided munitions. Guided munitions are air-to-air or air-to-surface weapons which have enhanced target hit capabilities with laser seekers or similar guidance utilities. The dynamic interferences in nonlinear regions of the flight envelope, leads the studies on control of guided munitions to search for adaptive solutions. The missile used in this study has no propulsive forces and do the adequate maneuvers commanded by the guidance algorithm with its ...
Citation Formats
E. Akkal, “Control actuation systems and seeker units of an air-to-surface guided munition,” M.S. - Master of Science, Middle East Technical University, 2003.