Feedback motion planning of a novel fully actuated unmanned surface vehicle via sequential composition of random elliptical funnels

2022-12-27
Özdemir, Oğuz
This thesis proposes and analyzes a motion planning and control schema for unmanned surface vehicles that fuses sampling-based approaches’ probabilistic completeness with closed-loop approaches’ robustness. The Proposed schema is based on the sequential composition of elliptical funnels, and it consists of two stages: tree generation and motion control. For validation of the approach, we carried out experiments using both simulation and physical setup besides the mathematical analysis. In order to have a common interface for both the simulations and the physical setup and to reduce duplication of work done, we implemented the approach as a ROS (Robot Operating System) node that can interface both similarly. Our results show that the proposed method handles the disturbances with minimal disruptions in the stability of the system. Furthermore, elliptic funnels improve the sparsity of the tree compared to the circular ones, thus, resulting in fewer mode changes.

Suggestions

Dielectric function of the two-dimensional electron liquid: An analytical fitting
Bulutay, C; Tomak, Mehmet (1996-03-15)
For electron-electron interactions in two-dimensional electronic systems the technique proposed by Singwi, Tosi, Land, and Sjolander (STLS) has been very promising. In this work, after showing the asymptotic behavior of the STLS local held correction we propose a simple expression for the local-held correction that contains two fitting parameters which are smoothly varying functions of the electronic density. The agreement of the fitting for the pair correlation function is remarkable. It further leads to a...
MPC-Graph: Nonlinear feedback motion planning using sparse sampling based neighborhood graph
Atasoy, Simay; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2022-1)
Robust and safe feedback motion planning and navigation is a critical task for autonomous mobile robotic systems considering the highly dynamic and uncertain nature scenarios of modern applications. For these reasons motion planning and navigation algorithms that have deep roots in feedback control theory has been at the center stage of this domain recently. However, the vast majority of such policies still rely on the idea that a motion planner first generates a set of open-loop possibly time-dependent tra...
Feedback motion planning of unmanned underwater vehicles via random sequential composition
Ege, Emr; Orguner, Umut; Department of Electrical and Electronics Engineering (2019)
In this thesis, we propose a new motion planning method to robustly and computationally efficiently solve (probabilistic) coverage, path planning, and navigation problems for unmanned underwater vehicles (UUVs). Our approach is based on synthesizing two existing methodologies: sequential decomposition of dynamic behaviors and rapidly exploring random trees. The main motivation for this integrated solution is a robust feed-back based and computationally feasible motion planning and navigation algorithm that ...
Performance Evaluation of Different Real-Time Motion Controller Topologies Implemented on a FPGA
MUTLU, B. R.; Yaman, Ulaş; Dölen, Melik; Koku, Ahmet Buğra (2009-11-18)
This paper presents a comprehensive comparison of several real-time motion controller topologies implemented on a field programmable gate array (FPGA). Controller topologies are selected as proportional-integral-derivative controller with command feedforward, sliding mode controller, fuzzy controller, and a hysteresis controller. Controllers and other necessary modules are developed using Verilog HDL and they are implemented on a ML505 development board with a Xilinx Virtex-5 FPGA chip. In order to take ful...
Comparison of 3D Versus 4D Path Planning for Unmanned Aerial Vehicles
Cicibas, Halil; Demir, Kadir Alpaslan; ARICA, NAFİZ (2016-11-01)
This research compares 3D versus 4D (three spatial dimensions and the time dimension) multi-objective and multi-criteria path-planning for unmanned aerial vehicles in complex dynamic environments. In this study, we empirically analyse the performances of 3D and 4D path planning approaches. Using the empirical data, we show that the 4D approach is superior over the 3D approach especially in complex dynamic environments. The research model consisting of flight objectives and criteria is developed based on int...
Citation Formats
O. Özdemir, “Feedback motion planning of a novel fully actuated unmanned surface vehicle via sequential composition of random elliptical funnels,” M.S. - Master of Science, Middle East Technical University, 2022.