Hybrid learning algorithm for intelligent short-term load forecasting

Kumluca Topallı, Ayça
Short-term load forecasting (STLF) is an important part of the power generation process. For years, it has been achieved by traditional approaches stochastic like time series; but, new methods based on artificial intelligence emerged recently in literature and started to replace the old ones in the industry. In order to follow the latest developments and to have a modern system, it is aimed to make a research on STLF in Turkey, by neural networks. For this purpose, a method is proposed to forecast Turkey̕s total electric load one day in advance. A hybrid learning scheme that combines off-line learning with real-time forecasting is developed to make use of the available past data for adapting the weights and to further adjust these connections according to the changing conditions. It is also suggested to tune the step size iteratively for better accuracy. Since a single neural network model cannot cover all load types, data are clustered due to the differences in their characteristics. Apart from this, special days are extracted from the normal training sets and handled separately. In this way, a solution is proposed for all load types, including working days, weekends and special holidays. For the selection of input parameters, a technique based on principal component analysis is suggested. A traditional ARMA model is constructed for the same data as a benchmark and results are compared. Proposed method gives lower percent errors all the time, especially for holiday loads. The average error for year 2002 data is obtained as 1.60%.
Citation Formats
A. Kumluca Topallı, “Hybrid learning algorithm for intelligent short-term load forecasting,” Ph.D. - Doctoral Program, Middle East Technical University, 2003.