Energy analysis of a solar assisted absorption heat pump for floor heating system

Sarı, Özgür Gökmen
Solar assisted single-stage absorption heat pump (AHP) was used to supply energy to a floor-heating system by using the exergy methods. An existing duplex-house,in Ankara, with a heating load of 25.5 kW was analysed. Heating loads of the spaces in the building were calculated and a floor heating panel was modelled for each space leading to the capacity of the AHP before it was designed. Solar energy was delivered to the evaporator and high temperature heat input delivered to the genarator are met by auxiliary units operating with natural gas.The solar energy gained by flat-plate collectors was circulated through AHP.The anaysis performed according to the storage tank temperature reference value if the water temperature leaving the storage tank exceeds a predetermined value it is directly circulated through the floor heating system. Exergue analysis were carried out with Mathcad program. Exergy analysis showed that irreversibility have an impact on absorption system performance.This study indicated which components in the system need to be improved thermally.A design procedure has been applied to a water-lithium-bromide absorption heat pump cycle and an optimisation procedure that consists of determinig the enthalpy, entropy ,exergy, temperature, mass flow rate in each component and coeficient of performance and exergetic coefficient of performance has been performed and tabulated.


Thermal contact conductance of nominaly flat surfaces
Yüncü, Hafit (2006-11-01)
The variation of thermal conductance of contact has been investigated as a function of apparent contact pressure experimentally. Experimental data has been obtained for steel, brass, copper and aluminum test pieces having different surface roughness over a wide range of contact pressures. Experimental results are compared with the theoretical predictions of an existing theory. Comparison revealed good agreement of trend with the experimental data, however, numerical values vary widely. Theory can predict th...
Shape Optimization of Reentry Vehicles to Minimize Heat Loading
Eyi, Sinan; Boyd, I D (2019-01-06)
The objective of the current study is to design an optimum reentry vehicle shape that minimizes heat loading subject to constraints on the maximum values of surface heat flux and temperature. A new heat loading formulation is developed for objective function evaluations. Axisymmetric Navier-Stokes and finite-rate chemical reaction equations are solved to evaluate the objective and constraint functions. The Menter SST turbulence model is employed for turbulence closure. A gradient-based method is used for op...
Selçuk, Nevin (1988-07-01)
Three flux-type models for three-dimensional radiative heat transfer were applied to the prediction of the radiative flux density and the source term of a box-shaped enclosure problem based on data reported previously on a large-scale experimental furnace with steep temperature gradients. The models, which are a six-term discrete ordinate model and two Schuster-Schwarzschild type six-flux models, were evaluated from the viewpoints of both predictive accuracy and computational economy by comparing their pred...
Laminar filmwise condensation of flowing vapor on a sphere
Erol, Doğuş; Yamalı, Cemil; Department of Mechanical Engineering (2004)
The objective of this study is to analyze theoretically the laminar film condensation of water vapor flowing on a sphere. For this purpose, the problem was handled by including all of the two-phase boundary layer parameters such as gravity, effect of vapor shear, inertia, energy convection and pressure gradient. For this full two-phase boundary layer system, the boundary layer equations, boundary conditions and the interfacial conditions were first analyzed, and then discretized. A computer program in Mathc...
Experimental thermal performance characterization of flat grooved heat pipes
Alijani, Hossein; Çetin, Barbaros; Akkuş, Yiğit; Dursunkaya, Zafer (TAYLOR & FRANCIS INC, 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA, 2015-06-15)
The thermal characterization of aluminum flat grooved heat pipes is performed experimentally for different groove dimensions. Three heat pipes with groove widths of 0.2 mm, 0.4 mm, and 1.5 mm are used in the experiments. The effect of the amount of the working fluid is extensively studied for each groove width. The results reveal that, although all three succeed in dissipating the heat input through the phase change of the working fluid by continuous evaporation and condensation, the effectiveness of the he...
Citation Formats
Ö. G. Sarı, “Energy analysis of a solar assisted absorption heat pump for floor heating system,” M.S. - Master of Science, Middle East Technical University, 2004.