Hide/Show Apps

Electrochemical Hydride Generation and Atom Trapping Atomic Absorption Spectrometry for Determination of Antimony

Download
2004
Menemenlioğlu, İpek
Electrochemical hydride generation is a suitable alternative to common hydride generation by NaBH4 which is widely used for the detection of volatile elements such as As, Se, Sb, Sn, Bi, Ge, Te and Pb. In this study, a thin-layer flow through electrochemical cell was designed. Lead and platinum foils were employed as cathode and anode materials, respectively, for the generation of antimony hydride. Argon was used as the carrier gas. The inlet arm of the conventional quartz tube atomizer was used for on-line preconcentration of generated hydrides. A portion of the inlet arm was heated externally to the collection temperature for trapping the analyte species which were generated electrochemically. For the revolatilization of the trapped species, the trap was further heated to the revolatilization temperature and hydrogen gas was introduced into the system 10 seconds afterwards. The experimental operation conditions for electrochemical hydride generation which include the acidities and flow rates of catholyte and anolyte solutions, carrier gas flow rate and the applied electric current, were optimized. For trapping, collection and revolatilization temperatures and hydrogen flow rates were optimized. Analyses of standard reference materials were performed to check the accuracy of the proposed method. 3s limit of detections were found as 1.03 ng ml-1 and 0.053 ng ml-1 with and without employing the trap, respectively. The trap has provided 20 fold sensitivity improvement.