Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrochhemical hydride generation and tungsten trap atomic absorption spectrometry for determination of antimony
Download
index.pdf
Date
2008
Author
Yıldıran, Ahmet
Metadata
Show full item record
Item Usage Stats
182
views
92
downloads
Cite This
Electrochemical hydride generation is an alternative technique to the chemical hydride generation by NaBH4 which is widely used for atomic spectrometric determination of volatile elements such as As, Bi, Ge, Pb, Sb, Se, Sn and Te. The aim of this research has been to develop an analytical technique at the level of ng/L for determination of antimony by using a simple and inexpensive AA spectrometer and the other parts that can be built in any laboratory. Carbon rod and platinum foil were used as cathode and anode materials, respectively, for the generation of antimony hydride. Argon was used as the carrier gas. Zr coated W-coil was used for on-line preconcentration of generated hydrides. A new apparatus independent from quartz T-tube atomizer was constructed and used to contain the atom trap. Zr coated W-trap was heated to the collection temperature for trapping the analyte species generated electrochemically. For the revolatilization of the trapped species, the trap was further heated to the revolatilization temperature. Revolatilized species were transported to a flame-heated quartz tube atomizer where the analytical signal was recorded. Duringcollection and revolatilization steps hydrogen gas was introduced into the system to prevent the oxidation of atom trap. The experimental operation conditions for electrochemical hydride generation and atom trapping were optimized. 3σ limit of detections were found to be 0.012 ng/mL and 0.41 ng/mL with and without using trap, respectively. The trap has provided 34 fold sensitivity improvement as compared with the electrochemical hydride generation alone. The interferences of some hydride forming elements and some transition metals on electrochemical hydride generation with and without employing the trap were investigated. Analysis of standard reference material was performed to check the accuracy of the proposed method.
Subject Keywords
Chemistry.
,
Analytical chemistry.
URI
http://etd.lib.metu.edu.tr/upload/3/12610155/index.pdf
https://hdl.handle.net/11511/18291
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Use of multi-walled carbon nanotubes in matrix solid phase dispersion extraction combined with gas chromatography
Njie, Njaw; Aygün, Rüveyde Sezer; Department of Chemistry (2008)
The use of Multi-Walled Carbon Nanotubes (MWCNT) as solid sorbent in Matrix Solid-Phase Dispersion (MSPD) extraction and preconcentration method was presented to determine some commonly used organophosphorus insecticides/OPIs in honey samples using a Gas Chromatography Flame Ionization Detector (GC-FID). OPIs are poisonous compounds used to kill insects and rodents by affecting their nervous system. The limit of detections obtained after MSPD extraction were 7.0 ng/g for Malathion, Malaoxon and Fenitrothion...
Determination of silver by chemical vapour generation and atomic absoption spectrometry
Öztürk, Çağla Pınar; Ataman, Osman Yavuz; Department of Chemistry (2004)
A method for determination of silver has been developed based on chemical vapour generation atomic absorption spectrometry (CVGAAS). Volatile species of silver in acidified medium were generated by the reduction of sodium tetrahydroborate; these species were sent to a flame-heated quartz tube atomizer (QTA) following isolation by using a gas-liquid separator. Flow injection (FI) was used for sample introduction. Optimization of parameters such as; concentrations of acid and NaBH4 concentration, flow rates o...
Electrochemical Hydride Generation and Atom Trapping Atomic Absorption Spectrometry for Determination of Antimony
Menemenlioğlu, İpek; Ataman, Osman Yavuz; Department of Chemistry (2004)
Electrochemical hydride generation is a suitable alternative to common hydride generation by NaBH4 which is widely used for the detection of volatile elements such as As, Se, Sb, Sn, Bi, Ge, Te and Pb. In this study, a thin-layer flow through electrochemical cell was designed. Lead and platinum foils were employed as cathode and anode materials, respectively, for the generation of antimony hydride. Argon was used as the carrier gas. The inlet arm of the conventional quartz tube atomizer was used for on-line...
On-line preconcentration of vapor forming elements on resistively heated w-coil prior to their determination by atomiz absorption spectrometry
Cankur, Oktay; Ataman, Osman Yavuz; Department of Chemistry (2004)
Vapor generation in atomic spectrometry is a well established technique for the determination of elements that can be volatilized by chemical reactions. In-situ trapping in graphite furnaces is nowadays one of the most popular methods to increase the sensitivity. In this study, resistively heated W-coil was used as an online trap for preconcentration and revolatilization of volatile species of Bi, Cd and Pb. The collected analyte species were revolatilized rapidly and sent to a quartz Ttube atomizer for AAS...
MERCURY SPECIATION BY ELECTROCHEMICAL SEPARATION AND COLD-VAPOR ATOMIC-ABSORPTION SPECTROMETRY
ERGUCYENER, C; AYGUN, S; Ataman, Osman Yavuz; TEMIZER, A (1988-01-01)
Mercury speciation in aqueous solutions containing inorganic mercury and methylmercury has been demonstrated using electrochemical separation prior to determination by cold-vapour atomic absorption spectrometry. Approximately 95% of the inorganic mercury was electro-deposited on a Pt electrode at –0.1 V, whereas for methylmercury –0.2 V or even more negative potentials were required. Organic mercury was determined by NaBH4 reduction after electrochemical separation. Inorganic mercury was determined in the o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Yıldıran, “Electrochhemical hydride generation and tungsten trap atomic absorption spectrometry for determination of antimony,” M.S. - Master of Science, Middle East Technical University, 2008.