Seismic performance evaluation and analysis of steel structures with semi-rigid connections

Ön, Selim
At the design stage, column-beam connections of steel structures are assumed as fully rigid or as hinges, and the design is completed with these assumptions. On the other hand, in practice, steel column-beam connections show neither fully rigid nor fully hinge behaviour, and the characteristic behaviour of the connections lies between these two special cases. Performing realistic calculation of these forces and knowing the behaviour of structures close to reality will decrease life and goods losses to the minimum level in a probable of earthquake to be encountered in the future. In this study, seismic performance of 2-D steel frames were evaluated by Capacity Spectrum Method proposed in the ATC 40 document published in 1996. A new computer program was developed in order to define all geometric and loading data and to perform nonlinear analysis of rigid and semi rigid steel frames for which the performances will be evaluated. In case studies, 3-Floor Steel Frames that have different bay numbers were investigated in various forms according to the rigid and different semi rigid connection types. In addition, the performances these frames for various seismic regions and soil conditions were compared. According to the results, it was observed that semi rigidly connected frames are under the effect of smaller ground acceleration have greater displacement values. As a consequence of this ductile and energy dissipative response, it was seen that the stresses in the members of frame become considerably small, relative to the stresses in the rigid frames̕. Furthermore, the performances of semi-rigid frames can be affected negatively beyond such a low rigidity. Consequently, the most convenient design should be made according to the seismic and soil region where the structure to be constructed by performing the necessary studies on the connection details in order to achieve


Experimental Determination of Resistance Characteristics of Support Details Used in Prestressed Concrete Bridge Girders
Baran, Eray; French, Catherine; Schultz, Arturo (American Society of Civil Engineers (ASCE), 2009-09-01)
Static load tests were performed on support details used at the ends of prestressed concrete pedestrian bridge girders to determine the resistance characteristics of girder supports in the direction perpendicular to the longitudinal axis of the girders. The specimens tested represent support details that have also been widely used in prestressed concrete highway bridges in Minnesota and in other states. Two specimens, one representing the free-end detail and one representing the restrained-end detail were s...
Seismic strengthening of reinforced concrete frames by precast concrete panels
BARAN, MEHMET; Susoy, M.; Okuyucu, D.; Tankut, T. (Thomas Telford Ltd., 2011-05-01)
An innovative occupant-friendly retrofitting technique has been developed for reinforced concrete (RC)-framed structures which constitute the major portion of the existing building stock. The idea is to convert the existing hollow brick infill wall into a load-carrying system acting as a cast-in-place concrete shear wall by reinforcing it with relatively thin high-strength precast concrete panels epoxy bonded to the plastered infill wall and epoxy connected to the frame members. In this study, results of 11...
Target damage level assessment for seismic performance evaluation of two-column reinforced concrete bridge bents
Yilmaz, Taner; Caner, Alp (IOS Press, 2012-01-01)
Displacement capacity verification analysis is usually used to evaluate the level of displacement at which structural elements reach their inelastic deformation capacities. In engineering practice, a modified version of displacement capacity analysis is used in the seismic performance assessment of bridge structures as an alternative to ductility and drift based approaches. In this seismic performance evaluation for a given target damage level, top bent displacement demand should not exceed a certain fracti...
An investigation on compatibility properties of exterior finish coats for insulated walls in terms of water vapour pemeability and modulus ofelasticity
Örs, Kerime; Tavukçuoğlu, Ayşe; Department of Building Science in Architecture (2006)
The compatibility properties of some contemporary finish coats together with their complementary layers used in insulated exterior walls were examined in terms of water vapour permeability and modulus of elasticity. Basic physical and mechanical properties of some synthetic-, cement- and polymer-based external finish coats were analyzed in laboratory. Some additional samples, complementing the wall section, were also examined for their water vapour permeability. Results showed that the finish coats were hig...
Seismic design of lifeline bridge using hybrid seismic isolation
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2002-03-01)
This paper presents the merits of a hybrid seismic isolation system used for the seismic design of a major bridge. The bridge is analyzed for two different arrangements of seismic isolation systems. The first arrangement consists of friction pendulum bearings at all substructure locations; the other incorporates a hybrid system where laminated elastomeric bearings are used at the abutments and friction pendulum bearings at the piers. Analysis results have demonstrated that the hybrid seismic isolation syste...
Citation Formats
S. Ön, “Seismic performance evaluation and analysis of steel structures with semi-rigid connections,” M.S. - Master of Science, Middle East Technical University, 2004.