Target damage level assessment for seismic performance evaluation of two-column reinforced concrete bridge bents

Yilmaz, Taner
Caner, Alp
Displacement capacity verification analysis is usually used to evaluate the level of displacement at which structural elements reach their inelastic deformation capacities. In engineering practice, a modified version of displacement capacity analysis is used in the seismic performance assessment of bridge structures as an alternative to ductility and drift based approaches. In this seismic performance evaluation for a given target damage level, top bent displacement demand should not exceed a certain fraction of displacement capacity under safety evaluation earthquake level. A limited amount of study is available in the literature addressing the limiting values used in setting target damage levels. Furthermore, prediction of seismic response of structures over flexible foundations is not an easy task due to the complexities involved in the soil-structure interaction. The focus of this study is to investigate target damage levels by defining a relationship between displacement capacity to demand ratio and strain based damage levels for seismic performance assessment of two column reinforced concrete bridge bents over flexible foundations.


Analytical prediction of thermal displacement capacity of integral bridges built on sand
Dicleli, Murat (SAGE Publications, 2005-02-01)
In this research, analytical equations are developed to calculate the lateral displacement capacity and maximum length limits of integral bridges built on sand based on the low-cycle fatigue performance of the piles under cyclic thermal variations and the ultimate strength of the abutment under positive thermal variations. To formulate the displacement capacity and maximum length limits of integral bridges based on the low cycle fatigue performance of steel H-piles under cyclic thermal variations, first, H-...
Low cycle fatigue effects in integral bridge steel H-piles under seismic displacement reversals
Dicleli, Murat (IOS Press, 2013-12-01)
Under the effect of medium and large intensity ground motions, the seismically-induced lateral cyclic displacements in steel H-piles of integral bridges (IBs) could be considerable. As a result, the piles may experience cyclic plastic deformations following a major earthquake. This may result in the reduction of their service life due to low-cycle fatigue effects. Accordingly, low cycle fatigue in integral bridge piles is investigated under seismic effects in this study. For this purpose, IBs with two spans...
Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics
Dicleli, Murat (Elsevier BV, 2007-08-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without viscous fluid dampers (VFDs) as a function of the intensity and frequency characteristics of the ground motion and VFD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple story CBFs with and without VFDs are conducted using ground motions with various frequency characteristics scaled to represent small, moderate and large intensity earthquakes. A...
Live Load Distribution Formulas for Single-Span Prestressed Concrete Integral Abutment Bridge Girders
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2009-11-01)
In this study, live load distribution formulas for the girders of single-span integral abutment bridges (IABs) are developed. For this purpose, two and three dimensional finite-element models (FEMs) of several IABs are built and analyzed. In the analyses, the effects of various superstructure properties such as span length, number of design lanes, prestressed concrete girder size, and spacing as well as slab thickness are considered. The results from the analyses of two and three dimensional FEMs are then u...
Lateral stiffness of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-08-01)
The accuracy of the finite element method and strip method of analysis for calculating the lateral stiffness of steel plate shear wall (SPSW) systems is assessed by making comparisons with experimental findings. Comparisons revealed that while both methods provide acceptable accuracy, they also require the generation of sophisticated computer models. In this paper, two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory...
Citation Formats
T. Yilmaz and A. Caner, “Target damage level assessment for seismic performance evaluation of two-column reinforced concrete bridge bents,” BRIDGE STRUCTURES, pp. 135–146, 2012, Accessed: 00, 2020. [Online]. Available: