Automatic target recognition in infrared imagery

Bayık, Tuba Makbule
The task of automatically recognizing targets in IR imagery has a history of approximately 25 years of research and development. ATR is an application of pattern recognition and scene analysis in the field of defense industry and it is still one of the challenging problems. This thesis may be viewed as an exploratory study of ATR problem with encouraging recognition algorithms implemented in the area. The examined algorithms are among the solutions to the ATR problem, which are reported to have good performance in the literature. Throughout the study, PCA, subspace LDA, ICA, nearest mean classifier, K nearest neighbors classifier, nearest neighbor classifier, LVQ classifier are implemented and their performances are compared in the aspect of recognition rate. According to the simulation results, the system, which uses the ICA as the feature extractor and LVQ as the classifier, has the best performing results. The good performance of this system is due to the higher order statistics of the data and the success of LVQ in modifying the decision boundaries.
Citation Formats
T. M. Bayık, “Automatic target recognition in infrared imagery,” M.S. - Master of Science, Middle East Technical University, 2004.