Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
"High precision CNC motion control"
Download
index.pdf
Date
2004
Author
Ay, Gökçe Mehmet
Metadata
Show full item record
Item Usage Stats
240
views
117
downloads
Cite This
This thesis focuses on the design of an electrical drive system for the purpose of high precision motion control. A modern electrical drive is usually equipped with a current regulated voltage source along with powerful motion controller system utilizing one or more micro-controllers and/or digital signal processors (DSPs). That is, the motor drive control is mostly performed by a dedicated digital-motion controller system. Such a motor drive mostly interfaces with its host processor via various serial communication protocols such as Profibus, CAN+, RS-485 etc. for the purpose of receiving commands and sending out important status/control signals. Considering that the motor drives lie at the heart of every (multi-axis) motion control system, the aim of this thesis is to explore the design and implementation of a conventional DC motor drive system suitable for most industrial applications that require precision and accuracy. To achieve this goal, various underlying control concepts and important implementation details are rigorously investigated in this study. A low power DC motor drive system with a power module, a current regulator and a motion controller is built and tested. Several design revisions on these subsystems are made so as to improve the overall performance of the drive system itself. Consequently, important أknow-howؤ required for building high performance (and high power) DC motor drives is gained in this research.
Subject Keywords
Control Engineering Systems.
,
Automatic Machinery (General)
URI
http://etd.lib.metu.edu.tr/upload/12605283/index.pdf
https://hdl.handle.net/11511/14419
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Modeling and simulation of a navigation system with an IMU and a Magnetometer
Kayasal, Uğur; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
In this thesis, the integration of a MEMS based inertial measurement unit and a three axis solid state magnetometer are studied. It is a fact that unaided inertial navigation systems, especially low cost MEMS based navigation systems have a divergent behavior. Nowadays, many navigation systems use GPS aiding to improve the performance, but GPS may not be applicable in some cases. Also, GPS provides the position and velocity reference whereas the attitude information is extracted through estimation filters. ...
Control system design for a haptic device
Bideci, Süleyman; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2007)
In this thesis, development of a control system is aimed for a 1 DOF haptic device, namely Haptic Box. Besides, it is also constructed. Haptic devices are the manipulators that reflect the interaction forces with virtual or remote environments to its users. In order to reflect stiffness, damping and inertial forces on a haptic device position, velocity and acceleration measurements are required. The only motion sensor in the system is an incremental optical encoder attached to the back of the DC motor. The ...
A programmable control unit for industrial applications
Güngör, Mustafa Kemal; Hızal, Mirzahan; Department of Electrical and Electronics Engineering (2003)
In this thesis, the automation of the long term and cyclic processes by using a programmable control unit is aimed. To achieve this goal, timing relays and various microcontrollers are investigated. PIC microcontroller is chosen to implement the control unit due to its advantages like high speed, Harvard and RISC architecture, low cost and flexibility for programming. Theory of the PIC microcontrollers is studied and a controller unit to be used in the mentioned processes is designed. Some features are adde...
Angular acceleration assisted stabilization of a-2 DOF gimbal platform
Öztürk, Taha; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2010)
In this thesis work construction of the angular acceleration signal of a 2-DOF gimbal platform and use of this signal for improving the stabilization performance is aimed. This topic can be divided into two subtopics, first being the construction of angular acceleration and the second being the use of this information in a way to improve system performance. Both problems should be tackled in order to get satisfactory results. The most important output of this work is defined as the demonstration of the impr...
Development of a stereo vision system for an industrial robot
Bayraktar, Hakan; Kaftanoğlu, Bilgin; Department of Mechanical Engineering (2004)
The aim of this thesis is to develop a stereo vision system to locate and classify objects moving on a conveyor belt. The vision system determines the locations of the objects with respect to a world coordinate system and class of the objects. In order to estimate the locations of the objects, two cameras placed at different locations are used. Image processing algorithms are employed to extract some features of the objects. These features are fed to stereo matching and classifier algorithms. The results of...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. M. Ay, ““High precision CNC motion control”,” M.S. - Master of Science, Middle East Technical University, 2004.