"High precision CNC motion control"

Download
2004
Ay, Gökçe Mehmet
This thesis focuses on the design of an electrical drive system for the purpose of high precision motion control. A modern electrical drive is usually equipped with a current regulated voltage source along with powerful motion controller system utilizing one or more micro-controllers and/or digital signal processors (DSPs). That is, the motor drive control is mostly performed by a dedicated digital-motion controller system. Such a motor drive mostly interfaces with its host processor via various serial communication protocols such as Profibus, CAN+, RS-485 etc. for the purpose of receiving commands and sending out important status/control signals. Considering that the motor drives lie at the heart of every (multi-axis) motion control system, the aim of this thesis is to explore the design and implementation of a conventional DC motor drive system suitable for most industrial applications that require precision and accuracy. To achieve this goal, various underlying control concepts and important implementation details are rigorously investigated in this study. A low power DC motor drive system with a power module, a current regulator and a motion controller is built and tested. Several design revisions on these subsystems are made so as to improve the overall performance of the drive system itself. Consequently, important أknow-howؤ required for building high performance (and high power) DC motor drives is gained in this research.

Suggestions

Control system design for a haptic device
Bideci, Süleyman; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2007)
In this thesis, development of a control system is aimed for a 1 DOF haptic device, namely Haptic Box. Besides, it is also constructed. Haptic devices are the manipulators that reflect the interaction forces with virtual or remote environments to its users. In order to reflect stiffness, damping and inertial forces on a haptic device position, velocity and acceleration measurements are required. The only motion sensor in the system is an incremental optical encoder attached to the back of the DC motor. The ...
A programmable control unit for industrial applications
Güngör, Mustafa Kemal; Hızal, Mirzahan; Department of Electrical and Electronics Engineering (2003)
In this thesis, the automation of the long term and cyclic processes by using a programmable control unit is aimed. To achieve this goal, timing relays and various microcontrollers are investigated. PIC microcontroller is chosen to implement the control unit due to its advantages like high speed, Harvard and RISC architecture, low cost and flexibility for programming. Theory of the PIC microcontrollers is studied and a controller unit to be used in the mentioned processes is designed. Some features are adde...
Angular acceleration assisted stabilization of a-2 DOF gimbal platform
Öztürk, Taha; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2010)
In this thesis work construction of the angular acceleration signal of a 2-DOF gimbal platform and use of this signal for improving the stabilization performance is aimed. This topic can be divided into two subtopics, first being the construction of angular acceleration and the second being the use of this information in a way to improve system performance. Both problems should be tackled in order to get satisfactory results. The most important output of this work is defined as the demonstration of the impr...
Modeling and simulation of a navigation system with an IMU and a Magnetometer
Kayasal, Uğur; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
In this thesis, the integration of a MEMS based inertial measurement unit and a three axis solid state magnetometer are studied. It is a fact that unaided inertial navigation systems, especially low cost MEMS based navigation systems have a divergent behavior. Nowadays, many navigation systems use GPS aiding to improve the performance, but GPS may not be applicable in some cases. Also, GPS provides the position and velocity reference whereas the attitude information is extracted through estimation filters. ...
Novel position measurement and estimation methods for CNC machine systems
Kılıç, Ergin; Dölen, Melik; Department of Mechanical Engineering (2007)
Precision control of translational motion is vital for many CNC machine tools as the motion of the machinery affects the dimensional tolerance of the manufactured goods. However, the direct measurement along with the accurate motion control of machine usually requires relatively expensive sensors i.e. potentiometers, linear scales, laser interferometers. Hence, this study attempts to develop reference models utilizing low-cost sensors (i.e. rotary encoders) for accurate position estimation. First, an indire...
Citation Formats
G. M. Ay, ““High precision CNC motion control”,” M.S. - Master of Science, Middle East Technical University, 2004.