Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of stochastic and non-stochastic volatility models.
Download
index.pdf
Date
2004
Author
Özkan, Pelin
Metadata
Show full item record
Item Usage Stats
299
views
92
downloads
Cite This
Changing in variance or volatility with time can be modeled as deterministic by using autoregressive conditional heteroscedastic (ARCH) type models, or as stochastic by using stochastic volatility (SV) models. This study compares these two kinds of models which are estimated on Turkish / USA exchange rate data. First, a GARCH(1,1) model is fitted to the data by using the package E-views and then a Bayesian estimation procedure is used for estimating an appropriate SV model with the help of Ox code. In order to compare these models, the LR test statistic calculated for non-nested hypotheses is obtained.
Subject Keywords
Probabilities.
URI
http://etd.lib.metu.edu.tr/upload/3/12605421/index.pdf
https://hdl.handle.net/11511/14442
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental design with short-tailed and long-tailed symmetric error distributions
Yilmaz, Yıldız Elif; Akkaya, Ayşen; Department of Statistics (2004)
One-way and two-way classification models in experimental design for both balanced and unbalanced cases are considered when the errors have Generalized Secant Hyperbolic distribution. Efficient and robust estimators for main and interaction effects are obtained by using the modified maximum likelihood estimation (MML) technique. The test statistics analogous to the normal-theory F statistics are defined to test main and interaction effects and a test statistic for testing linear contrasts is defined. It is ...
Yield curve estimation and prediction with Vasicek Model
Bayazıt, Derviş; Hayvafi, Azize; Department of Financial Mathematics (2004)
The scope of this study is to estimate the zero-coupon yield curve of tomorrow by using Vasicek yield curve model with the zero-coupon bond yield data of today. The raw data of this study is the yearly simple spot rates of the Turkish zero-coupon bonds with different maturities of each day from July 1, 1999 to March 17, 2004. We completed the missing data by using Nelson-Siegel yield curve model and we estimated tomorrow yield cuve with the discretized Vasicek yield curve model.
Representation of Multiplicative Seasonal Vector Autoregressive Moving Average Models
Yozgatlıgil, Ceylan (Informa UK Limited, 2009-11-01)
Time series often contain observations of several variables and multivariate time series models are used to represent the relationship between these variables. There are many studies on vector autoregressive moving average (VARMA) models, but the representation of multiplicative seasonal VARMA models has not been seriously studied. In a multiplicative vector model, such as a seasonal VARMA model, the representation is not unique because of the noncommutative property of matrix multiplication. In this articl...
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Comparison of regression techniques via Monte Carlo simulation
Mutan, Oya Can; Ayhan, Hüseyin Öztaş; Department of Statistics (2004)
The ordinary least squares (OLS) is one of the most widely used methods for modelling the functional relationship between variables. However, this estimation procedure counts on some assumptions and the violation of these assumptions may lead to nonrobust estimates. In this study, the simple linear regression model is investigated for conditions in which the distribution of the error terms is Generalised Logistic. Some robust and nonparametric methods such as modified maximum likelihood (MML), least absolut...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Özkan, “Analysis of stochastic and non-stochastic volatility models.,” M.S. - Master of Science, Middle East Technical University, 2004.