Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental design with short-tailed and long-tailed symmetric error distributions
Download
index.pdf
Date
2004
Author
Yilmaz, Yıldız Elif
Metadata
Show full item record
Item Usage Stats
250
views
105
downloads
Cite This
One-way and two-way classification models in experimental design for both balanced and unbalanced cases are considered when the errors have Generalized Secant Hyperbolic distribution. Efficient and robust estimators for main and interaction effects are obtained by using the modified maximum likelihood estimation (MML) technique. The test statistics analogous to the normal-theory F statistics are defined to test main and interaction effects and a test statistic for testing linear contrasts is defined. It is shown that test statistics based on MML estimators are efficient and robust. The methodogy obtained is also generalized to situations where the error distributions from block to block are non-identical.
Subject Keywords
Probabilities.
URI
http://etd.lib.metu.edu.tr/upload/12605191/index.pdf
https://hdl.handle.net/11511/14346
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Multiple linear regression model with stochastic design variables
İslam, Muhammed Qamarul (Informa UK Limited, 2010-01-01)
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.
Analysis of stochastic and non-stochastic volatility models.
Özkan, Pelin; Ayhan, Hüseyin Öztaş; Department of Statistics (2004)
Changing in variance or volatility with time can be modeled as deterministic by using autoregressive conditional heteroscedastic (ARCH) type models, or as stochastic by using stochastic volatility (SV) models. This study compares these two kinds of models which are estimated on Turkish / USA exchange rate data. First, a GARCH(1,1) model is fitted to the data by using the package E-views and then a Bayesian estimation procedure is used for estimating an appropriate SV model with the help of Ox code. In order...
Comparison of regression techniques via Monte Carlo simulation
Mutan, Oya Can; Ayhan, Hüseyin Öztaş; Department of Statistics (2004)
The ordinary least squares (OLS) is one of the most widely used methods for modelling the functional relationship between variables. However, this estimation procedure counts on some assumptions and the violation of these assumptions may lead to nonrobust estimates. In this study, the simple linear regression model is investigated for conditions in which the distribution of the error terms is Generalised Logistic. Some robust and nonparametric methods such as modified maximum likelihood (MML), least absolut...
Linear contrasts in experimental design with non-identical error distributions
Senoglu, B; Tiku, ML (Wiley, 2002-01-01)
Estimation of linear contrasts in experimental design, and testing their assumed values, is considered when the error distributions from block to block are not necessarily identical. The normal-theory solutions are shown to have low efficiencies as compared to the solutions presented here.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. E. Yilmaz, “Experimental design with short-tailed and long-tailed symmetric error distributions,” M.S. - Master of Science, Middle East Technical University, 2004.