Analysis of tube upsetting

Download
2004
Tüzün, Aydın
Producing axi-symmetrical parts with holes from tubular stock by tube upsetting is a frequently used technique in industry. There are basically four types of tube upsetting process; external, internal, simultaneous internal and external upsetting, and expanding of tube. In general, tubular parts require more than one upsetting stage. In industry, generally trial-error methods, which require lots of time and effort depending on experience, are used for the design of stages. Wrong design causes failures during production. On the other hand, the problems, which are likely to be encountered in manufacturing, can be observed and solved in the design stage by using finite element analysis. In this study, the finite element analyses of external, internal, simultaneous internal and external tube upsetting, and tube expanding processes have been realized. During the analyses, the part and the die geometries at the intermediate stages, which have been designed according to the proposed procedures, have been used. The stress and strain distributions and die filling actions have been observed during the process. The process design and die geometries have been evaluated according to the finite element results. It has been seen that the recommended procedures generally generate acceptable designs. In some cases, it has been noted that minor modifications may be required on the design.

Suggestions

Analysis of roll-forging process
Karacaovalı, Hakan; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2005)
Roll-forging is a metal forming process and mainly used for preform forging of long parts prior to press or hammer forging in the industry. Variable cross sections through the length of billet can be obtained by roll-forging to acquire an adequate distribution of material to the next forging stages. In the design of process and dies used in roll-forging, there are some empirical techniques in literature. However these techniques only provide approximate reduction ratio and elongation during the process and ...
An investigation on dynamic contact parameters in machining center spindle tool assemblies
Özşahin, Orkun; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2008)
In machining centers, with the increasing trends in high precision machining, chatter has become an important problem which results in poor surface finish and low material removal rate. Chatter can be avoided with stability diagrams which provide the stable regions in the machining process for the depth of cut and spindle speed combinations. In order to obtain stability diagrams, tool point frequency response function (FRF) of the system should be obtained. Throughout this study, contact parameters which ar...
Analysis of warm forging process
Aktakka, Gülgün; Darendeliler, Haluk; Department of Mechanical Engineering (2006)
Forging is a metal forming process commonly used in industry. Forging process is strongly affected by the process temperature. In hot forging process, a wide range of materials can be used and even complex geometries can be formed. However in cold forging, only low carbon steels as ferrous material with simple geometries can be forged and high capacity forging machinery is required. Warm forging compromise the advantages and disadvantages of hot and cold forging processes. In warm forging process, a product...
Exact solution of rotating FGM shaft problem in the elastoplastic state of stress
Akis, Tolga; Eraslan, Ahmet Nedim (Springer Science and Business Media LLC, 2007-10-01)
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca's yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considerina different material compositions as well as a wide range of bore radi...
Development of postprocessor, simulation and verification software for a five-axis CNC milling machine
Cengiz, Ender; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2005)
Five-axis CNC milling machine tools bring great facility to produce complex workpieces with increased dimensional accuracy and better surface quality in shorter machining times. However, kinematics of five-axis machine tools has a complex form which makes it difficult to operate these machine tools properly. The difficulty arises from the complexity of NC-Code generation and tool path verification. Collision of machine tool or setup components with each other is a severe problem in five-axis machining opera...
Citation Formats
A. Tüzün, “Analysis of tube upsetting,” M.S. - Master of Science, Middle East Technical University, 2004.