Production and properties of glass bonded apatite-wollastonite bioceramics

Download
2005
Vakıfahmetoğlu, Çekdar
Apatite containing bioceramic materials are considered to be potentially useful for replacement or repair of natural bone. In the present study, the aim was to produce a new composite bioceramic containing crystalline apatite and wollastonite phases with a bimodal grain size distribution. The manufacturing scheme was based on the liquid phase sintering process in which the compacts pressed from powders of apatite (HAP or Si-HAP) and pseudowollastonite was sintered in the presence of a liquid phase. Three distinct fluxing agents, magnesium flux (MCAS), sodium feldspar and sodium frit (NCAS), were prepared to act as additives for generating the liquid phase during sintering. Among those, the use of sodium frit resulted in the expected bimodal microstructural assembly. During the sintering studies, it was discovered that the apatite component of the ceramic was prone to compositional modifications by reaction with the liquid phase. This interaction resulted in a formation of siliconized HAP which crystallized in the form of rod-like grains. Meanwhile wollastonite grains tended to exhibit faceted equiaxed morphology and bonded to rod-like apatite grains with the help of a glassy phase. The results showed significant enhancement in the mechanical properties of apatite-wollastonite composites compared to phase pure hydroxyapatite. For example, the sample with 47.5 wt% Si-HAP2 + 47.5 wt% W + 5 wt% NCASfrit had the highest value of flexural strength, 83.6 MPa, which was almost twice that of hydroxyapatite, 46.3 MPa. The results for other properties such as compressive strength, hardness and fracture toughness also demonstrated the benefit of apatite-wollastonite composite approach.

Suggestions

Preparation and characterization of biodegradable composite systems as hard tissue supports: bone fillers, bone regeneration membranes and scaffolds
Sezer, Ümran Aydemir; Hasırcı, Nesrin; Department of Biomedical Engineering (2012)
In tissue engineering applications, use of biodegradable and biocompatible materials are essential. As the tissue regenerate itself on the material surface, the material degrades with enzymatic or hydrolytic reactions. After a certain time, natural tissue takes the place of the artificial support. Poly(ε-caprolactone) (PCL) is one of the preferable polymers used in the restoration of the bone defects due to its desirable mechanical properties and biocompatibility. Addition of inorganic calcium phosphate par...
Production of recombinant proteins by yeast cells
Celik, Eda; Çalık, Pınar (Elsevier BV, 2012-09-01)
Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosa...
Influence of nickel (II) and chromium (VI) on the laboratory scale rotating biological contactor
Taseli, B. K.; Gökçay, Celal Ferdi; Gurol, A. (Springer Science and Business Media LLC, 2008-09-01)
High concentration of heavy metals is toxic for most microorganisms and cause strict damage in wastewater treatment operations and often a physico-chemical pretreatment prior to biological treatment is considered necessary. However, in this study it has been shown that biological systems can adapt to Ni (II) and Cr (VI) when their concentration is below 10 and 20 mg/L, respectively. The aim of this study was to evaluate the effect of Ni (II) and Cr (VI) on the lab-scale rotating biological contactor process...
Isolation of antimicrobial molecules from agricultural biomass and utilization in xylan-based biodegradable films
Çekmez, Umut; Bakır, Ufuk; Department of Biotechnology (2010)
Cotton stalk lignin extractions were performed via alkaline methods at different conditions. Crude and post treated cotton stalk lignins, olive mill wastewater and garlic stalk juice were examined in terms of antimicrobial activity. Antimicrobial lignin was isolated depending on alkaline extraction conditions. Lignin extracted at 60°C exhibited significant antimicrobial effect towards both Escherichia coli and Bacillus pumilus. However different post treatments such as ultrasonication and TiO2-assisted phot...
A rapid and simple method for staining of the crystal protein of bacillus thuringiensis
Sharif, Fade A.; Alaeddinoglu, Naif Gürdal (Springer Science and Business Media LLC, 1988-6)
A rapid and simple method of staining for the crystal protein (δ-endotoxin or parasporal body) ofBacillus thuringiensis has been developed. Changes in colonial morphology were observed when cells lost their ability to form crystal protein or both crystal protein and spore.
Citation Formats
Ç. Vakıfahmetoğlu, “Production and properties of glass bonded apatite-wollastonite bioceramics,” M.S. - Master of Science, Middle East Technical University, 2005.