Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Influence of nickel (II) and chromium (VI) on the laboratory scale rotating biological contactor
Date
2008-09-01
Author
Taseli, B. K.
Gökçay, Celal Ferdi
Gurol, A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
237
views
0
downloads
Cite This
High concentration of heavy metals is toxic for most microorganisms and cause strict damage in wastewater treatment operations and often a physico-chemical pretreatment prior to biological treatment is considered necessary. However, in this study it has been shown that biological systems can adapt to Ni (II) and Cr (VI) when their concentration is below 10 and 20 mg/L, respectively. The aim of this study was to evaluate the effect of Ni (II) and Cr (VI) on the lab-scale rotating biological contactor process. It was found that, addition of Ni (II) up to 10 mg/L did not reduce the chemical oxygen demand removal efficiency and on the contrary concentrations below 10 mg/L improved the performance. The influent Ni (II) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 86.5%. Moreover, Ni (II) concentration above 10 mg/L was relatively toxic to the system and produced lower treatment efficiencies than the baseline study without Ni (II). Turbidity and suspended solids removals were not stimulated to a great extent with nickel. Addition of Ni (II) did not seem to affect the pH of the system during treatment. The dissolved oxygen concentration did not drop below 4 mg/L at all concentrations of Ni (II) indicating aerobic conditions prevailed in the system. Experiments conducted with Cr (VI) revealed that addition of Cr (VI) up to 20 mg/L did not reduce the COD removal efficiency and on the contrary concentrations below 20 mg/L improved the performance. The influent Cr (VI) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 88%. Turbidity and SS removals were more efficient at 5 mg/L Cr (VI) concentration, rather than 1 mg/L, which lead to the conclusion that 5 mg/L Cr (VI) concentration is the optimum concentration, in terms of COD, turbidity and SS removals. Similar with Ni (II) experiments, addition of Cr (VI) did not significantly affect the pH value of the effluent. The DO concentration remained above 5 mg/L.
Subject Keywords
Biotechnology
,
Applied Microbiology and Biotechnology
URI
https://hdl.handle.net/11511/52376
Journal
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
DOI
https://doi.org/10.1007/s10295-008-0379-9
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
EFFECT OF OXYGEN ON ETHANOL FERMENTATION IN PACKED-BED TAPERED-COLUMN REACTOR
Hamamcı, Haluk (1988-07-01)
In ethanol production with immobilized yeast a major problem is the provision of nutrients to these highly concentrated cells. O2 being one of the nutrients of utmost importance to yeast cells, was fed into a column packed with beads with a cell loading of more than 40 g/l. Since addition of large volume of air or O2 to a cylindrical column reactor would aggravate the problems of pressure build up and channelling caused by the evolving CO2 gas, a tapered-column reactor and pulsed flow of oxygen gas was used...
Microbial Community Degradation of Widely Used Quaternary Ammonium Disinfectants
Oh, Seungdae; Kurt, Zöhre; Tsementzi, Despina; Weigand, Michael R.; Kim, Minjae; Hatt, Janet K.; Tandukar, Madan; Pavlostathis, Spyros G.; Spain, Jim C.; Konstantinidis, Konstantinos T. (American Society for Microbiology, 2014-10-01)
Benzalkonium chlorides (BACs) are disinfectants widely used in a variety of clinical and environmental settings to prevent microbial infections, and they are frequently detected in nontarget environments, such as aquatic and engineered biological systems, even at toxic levels. Therefore, microbial degradation of BACs has important ramifications for alleviating disinfectant toxicity in nontarget environments as well as compromising disinfectant efficacy in target environments. However, how natural microbial ...
Influence of controlled-pH and uncontrolled-pH operations on recombinant benzaldehyde lyase production by Escherichia coli
Çalık, Pınar; Demir, AS (Elsevier BV, 2006-03-02)
To select the host microorganism having the highest benzaldehyde lyase (BAL) production capacity, pUC 18::bal gene was transferred into four Escherichia coli strains. As the highest enzyme activity was obtained with E. coli K12 (ATCC 10798) carrying pUC18::bal gene, BAL production medium was designed for K 12. Using the designed medium containing 8.0 kg m(-3) glucose, 5.0 kg m(-3) (NH4)(2)HPO4 and the salt solution, the effects of uncontrolled-pH and controlled-pH operations were investigated at uncontrolle...
Influence of oxygen transfer on benzaldehyde lyase production by recombinant Escherichia coli BL21(DE3) pLySs
Angardi, Vahideh; Çalık, Pınar; Department of Chemical Engineering (2007)
In this study, the effects of oxygen transfer conditions on the synthesis of the enzyme benzaldehyde lyase as intracellular in recombinant E. coli BL21 (DE3) pLysS was investigated sistematically and a comprehensive model was developed to determine benzaldehyde lyase activity. For this purpose, the research program was carried out in mainly two parts. In the first part of study, the effects of oxygen transfer together with the mass transfer coefficient (KLa), enhancement factor E (=KLa/KLao), volumetric oxy...
Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae.
Şeker, Tamay; Nielsen, J (Springer Science and Business Media LLC, 2005-04-01)
The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl CoA, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. K. Taseli, C. F. Gökçay, and A. Gurol, “Influence of nickel (II) and chromium (VI) on the laboratory scale rotating biological contactor,”
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
, pp. 1033–1039, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52376.