Optimization of well placement in complex carbonate reservoirs using artifical intelligence

Download
2004
Uraz, İrtek
This thesis proposes a framework for determining the optimum location of an injection well by using an inference method, Artificial Neural Networks and a search algorithm to create a search space and locate the global maxima. Theoretical foundation of the proposed framework is followed by description of the field for case study. A complex carbonate reservoir, having a recorded geothermal production history is used to evaluate the proposed framework ( Kizildere Geothermal field, Turkey). In the proposed framework, neural networks are used as a tool to replicate the behavior of commercial simulators, by capturing the response of the field given a limited number of parameters (Temperature, pressure, injection location and injection flow rate) as variables. A study on different network designs is followed by introduction of a search algorithm to generate decision surfaces. Results indicate that a combination of neural networks and an optimization algorithm (explicit search with variable stepping) to capture local maxima can be used to locate a region or a location for optimum well placement. Results also indicate shortcomings and possible pitfalls associated with the approach. With the provided flexibility of the proposed workflow, it is possible to incorporate various parameters including injection flow rate, temperature and location. For the field of study (Kizildere), optimum injection well location is found to be in the south-eastern part of the field. Specific locations resulting from the workflow indicated a consistent search space, having higher values in that particular region. When studied with fixed flow rates (2500 and 4911 m 3 /day), search run through the whole field located two locations which are in the very same region; thus resulting with consistent predictions. Further study carried on by incorporating effect of different flow rates indicates that the

Suggestions

Optimization of well placement geothermal reservoirs using artificial intelligence
Akın, Serhat; Kök, Mustafa Verşan (2010-06-01)
This research proposes a framework for determining the optimum location of an injection well using an inference method, artificial neural networks and a search algorithm to create a search space and locate the global maxima. A complex carbonate geothermal reservoir (Kizildere Geothermal field, Turkey) production history is used to evaluate the proposed framework. Neural networks are used as a tool to replicate the behavior of commercial simulators, by capturing the response of the field given a limited numb...
RECONSTRUCTION OF PERMITTIVITY AND CONDUCTIVITY PROFILES OF A DIELECTRIC SLAB IN THE TIME DOMAIN BY DESCENT METHODS
ONDER, M; Kuzuoğlu, Mustafa (Institution of Engineering and Technology (IET), 1992-10-01)
An optimisation approach is presented for the problem of reconstructing the permittivity and conductivity profiles of a dielectric slab from the reflected and transmitted field data. The problem is treated as an optimal control problem where the norm of the difference of measured and calculated boundary data is minimised subject to the state equation governing the system. The original constrained optimisation problem is reduced to the evaluation of stationary points of an augmented functional which is obtai...
Robust Kalman filtering for small satellite attitude estimation in the presence of measurement faults
Söken, Halil Ersin; Sakai, Shin-ichiro (Elsevier BV, 2014-03-01)
In normal working conditions it is possible to achieve sufficient attitude estimation accuracy for a satellite using regular Kalman filter algorithm. On the other hand, when there is a fault in the measurements, the Kalman filter fails in providing the required accuracy and may even collapse over time. In this paper, a Robust Kalman filtering method is proposed for the attitude estimation problem. By using the proposed method both the Extended Kalman Filter and Unscented Kalman Filter are modified and the n...
Generalized beam angle statistics for shape descrition
Tola, Ömer Önder; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2004)
In this thesis, we introduce a new shape descriptor and a graph based matching algorithm to detect a template shape in an image that contains a single object. The shape descriptor, Generalized Beam Angle Statistics, GBAS is obtained with the generalization of the boundary based shape descriptor, Beam Angle Statistics, BAS
Stability analysis of constraints in flexible multibody systems dynamics
İder, Sıtkı Kemal (Elsevier BV, 1990-1)
Automated algorithms for the dynamic analysis and simulation of constrained multibody systems assume that the constraint equations are linearly independent. During the motion, when the system is at a singular configuration, the constraint Jacobian matrix possesses less than full rank and hence it results in singularities. This occurs when the direction of a constraint coincides with the direction of the lost degree of freedom. In this paper the constraint equations for deformable bodies are modified for use...
Citation Formats
İ. Uraz, “Optimization of well placement in complex carbonate reservoirs using artifical intelligence,” M.S. - Master of Science, Middle East Technical University, 2004.