Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Polymerization and polymer characterization of acetylenedicarboxylic acid monopotassium salt
Download
index.pdf
Date
2005
Author
Anaçoğlu, Elif
Metadata
Show full item record
Item Usage Stats
193
views
105
downloads
Cite This
Acetylenedicarboxylic acid monopotassium salt, ADCA-K, was polymerized by radiation induced solid-state and chemical initiator induced solution polymerization methods. Radiation induced solid-state polymerization was carried out by Co-60 g-radiation at room temperature. The powder polymer obtained was soluble in water but insoluble in common organic solvents. The solution polymerization initiated by benzoylperoxide was carried out in an oil bath at 90°C. The polymer obtained was soluble in water but insoluble in dimethylsulfoxide. In the first stage of the polymerization, H2O, CO and/or CO2 gases were evolved and the polymerization was proceeded on the acetylene group. The polymers obtained were characterized by FT-IR, DSC, TGA-FTIR, NMR and DP-MS methods. The crystal structure effect on polymerization was investigated by X-Ray method. The monomer is monoclinic with a space group of C2/c. The unit cell parameters are a=795.4, b=1192.6, c=591.8 pm and b=105.40. Polymer showed a partial polycrystalline structure. The larger fraction of polymer has identical crystal structure to that of the monomer. Therefore, polymerization takes place a topotactic mechanism.
Subject Keywords
Polymers.
,
Macromolecules.
URI
http://etd.lib.metu.edu.tr/upload/12605797/index.pdf
https://hdl.handle.net/11511/15029
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Synthesis, characterization, and polymerization of polyether bridged thiophene and aniline derivatives
Tirkeş, Seha; Önal, Ahmet Muhtar; Department of Polymer Science and Technology (2008)
New compounds consisting of 3-thienyl and aniline units linked by polyether bridges have been synthesized and their electrochemical polymerization was performed via constant potential electrolysis and cyclic voltammetry. In the case of 3-thienyl derivatives two compounds, 1,12-di-3-thienyl-2,5,8,11-tetraoxadodecane (MI) and 1,15-di-3-thienyl-2,5,8,11,14-pentaoxapentadecane (MII) were synthesized utilizing literature methods and their corresponding polymers, poly(I) and poly(II) were prepared in an electroly...
Synthesis and characterization of polythiophene/montmorillonite and polythiophene/polypropylene composites
Dülgerbaki, Çiğdem; Küçükyavuz, Zuhal; Department of Chemistry (2006)
In this study, polythiophene(PTP)/montmorillonite(MMT) nanocomposites were synthesized by in situ intercalative polymerization and chemical oxidative polymerization. In in situ intercalative polymerization method, composites containing 90 and 95% MMT were prepared. In chemical oxidative polymerization method, a series of composites ranging from 1 to 15% by weight MMT were synthesized. Thermal and morphological properties of samples were investigated by Differential Scanning Calorimeter (DSC), Thermal Gravim...
Microwave-assisted simultaneous novel synthesis of poly(dibromophenylene oxide)s, poly(diiodophenylene oxide)s (p), conducting(cp) and/or crosslinked (clp) and/or radical ion polymers (rip)
Çelik, Güler Bayraklı; Kısakürek, Duygu; Department of Chemistry (2007)
Microwave-assisted novel synthesis of poly(dibromophenylene oxide) or poly(diiodophenylene oxide) (P), conducting polymer (CP) and/or crosslinked polymer (CLP) and/or radical ion polymer (RIP) were achieved simultaneously from lithium, sodium or potassium 2,4,6-bromophenolate or sodium 2,4,6-iodophenolate in a very short time interval. Polymerizations were carried out by constant microwave energy with different time intervals varying from 1 to 20 min; or at constant time intervals with variation of microwav...
Synthesis of block conducting copolmers of cholesteryl functionalized thiophene and their use in the immobilization of cholesterol oxidase
Çırpan, Ali; Toppare, Levent Kamil; Department of Chemistry (2004)
Synthesis and characterization of conducting copolymers were achieved by using thiophene-3-yl acetic acid cholesteryl ester (CM) and poly (3-methylthienyl methacrylate) (PMTM). A new polythiophene containing a cholesteryl side chain in the b- position was chemically polymerized in nitromethane/carbon tetrachloride using FeCl3 as the oxidizing agent. Polymerization was also achieved by constant current electrolysis in dichloromethane. Subsequently, conducting copolymers of thiophene-3-yl acetic acid choleste...
Synthesis of polythiophene and polypyrrole derivatives and their application in electrochromic devices
Ak, Metin; Toppare, Levent Kamil; Department of Chemistry (2006)
Different substituted thiophene and pyrrole monomers namely hexamethylene (bis-3-thiopheneacetamide) (HMTA), N-(4-(3-thienylmethylene)-oxycarbonylphenyl)maleimide (MBThi), 2,4,6-Tris-(4-pyrrol-1-yl-phenoxy)-[1,3,5]triazine (TriaPy), 2,4,6-Tris-(thiophen-3-ylmethoxy)-[1,3,5] triazine (TriaTh), and N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide (NMT) were synthesized. The chemical structures of the monomers were characterized by Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) and Fourier Transform Infr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Anaçoğlu, “Polymerization and polymer characterization of acetylenedicarboxylic acid monopotassium salt,” M.S. - Master of Science, Middle East Technical University, 2005.