Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computer-aided design of horizontal-axis wind turbine blades
Download
index.pdf
Date
2005
Author
Duran, Serhat
Metadata
Show full item record
Item Usage Stats
490
views
252
downloads
Cite This
Designing horizontal-axis wind turbine (HAWT) blades to achieve satisfactory levels of performance starts with knowledge of the aerodynamic forces acting on the blades. In this thesis, HAWT blade design is studied from the aspect of aerodynamic view and the basic principles of the aerodynamic behaviors of HAWTs are investigated. Blade-element momentum theory (BEM) known as also strip theory, which is the current mainstay of aerodynamic design and analysis of HAWT blades, is used for HAWT blade design in this thesis. Firstly, blade design procedure for an optimum rotor according to BEM theory is performed. Then designed blade shape is modified such that modified blade will be lightly loaded regarding the highly loaded of the designed blade and power prediction of modified blade is analyzed. When the designed blade shape is modified, it is seen that the power extracted from the wind is reduced about 10% and the length of modified blade is increased about 5% for the same required power. BLADESIGN which is a user-interface computer program for HAWT blade design is written. It gives blade geometry parameters (chord-length and twist distributions) and design conditions (design tip-speed ratio, design power coefficient and rotor diameter) for the following inputs; power required from a turbine, number of blades, design wind velocity and blade profile type (airfoil type). The program can be used by anyone who may not be intimately concerned with the concepts of blade design procedure and the results taken from the program can be used for further studies.
Subject Keywords
Renewable energy sources.
URI
http://etd.lib.metu.edu.tr/upload/12605790/index.pdf
https://hdl.handle.net/11511/15033
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
FREE VIBRATION ANALYSIS OF UNIFORM AND ASYMMETRIC COMPOSITE PRETWISTED ROTATING THIN WALLED BEAM
Farsadi, Touraj; Şener, Özgün; Kayran, Altan (2017-11-09)
Composite pretwisted rotating thin walled beams (TWB) can be used as the structural model for composite helicopter and wind turbine blades for the study of aeroelastic response of the blades. In the present study, semi-analytical solution is performed for the free vibration analysis of uniform and asymmetric composite pretwisted rotating TWB. The approximation of the Green-Lagrange strain tensor is adopted to derive the strain field of the system. The Euler Lagrange governing equations of the dynamic system...
Evaluation of the Effect of Spar Cap Fiber Angle of Bending-Torsion Coupled Blades on the Aero-Structural Performance of Wind Turbines
Şener, Özgün; Gozc, M. Ozan; Kayran, Altan (ASME International, 2018-08-01)
This paper presents a comprehensive study of the evaluation of the effect of spar cap fiber orientation angle of composite blades with induced bending–torsion coupling (IBTC) on the aero-structural performance wind turbines. Aero-structural performance of wind turbines with IBTC blades is evaluated with the fatigue load mitigation in the whole wind turbine system, tower clearances, peak stresses in the blades, and power generation of wind turbines. For this purpose, a full E-glass/epoxy reference blade has ...
Delamination-Debond Behaviour of Composite T-Joints in Wind Turbine Blades
Gulasik, H.; Çöker, Demirkan (2014-06-20)
Wind turbine industry utilizes composite materials in turbine blade structural designs because of their high strength/stiffness to weight ratio. T-joint is one of the design configurations of composite wind turbine blades. T-joints consist of a skin panel and a stiffener co-bonded or co-cured together with a filler material between them. T-joints are prone to delaminations between skin/stiffener plies and debonds between skin-stiffener-filler interfaces. In this study, delamination/debond behavior of a co-b...
Aerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icing
Yirtici, Ozcan; Tuncer, İsmail Hakkı (2021-05-01)
Ice formation on a wind turbine alters the airfoil profiles of the blades and causes degradation in the aerodynamic performance of the wind turbine and the resulting power production losses. Since the blade profile plays a significant role in the icing of a blade, power production losses due to icing can be minimized by optimizing the blade profile against icing. In this study, blade profiles are optimized in order to minimize power production losses. A Gradient based aerodynamic shape optimization method i...
Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade
Kaya, Mehmet Numan; Kose, Faruk; Uzol, Oğuz; Ingham, Derek; Ma, Lin; Pourkashanian, Mohamed (2021-09-01)
The aerodynamic shapes of the blades are still of high importance and various aerodynamic designs have been developed in order to increase the amount of energy production. In this study, a swept horizontal axis wind turbine blade has been optimized to increase the aerodynamic efficiency using the computational fluid dynamics method. To illustrate the technique, a wind turbine with a rotor diameter of 0.94 m has been used as the baseline turbine, and the most appropriate swept blade design parameters, namely...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Duran, “Computer-aided design of horizontal-axis wind turbine blades,” M.S. - Master of Science, Middle East Technical University, 2005.