Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade
Date
2021-09-01
Author
Kaya, Mehmet Numan
Kose, Faruk
Uzol, Oğuz
Ingham, Derek
Ma, Lin
Pourkashanian, Mohamed
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
362
views
0
downloads
Cite This
The aerodynamic shapes of the blades are still of high importance and various aerodynamic designs have been developed in order to increase the amount of energy production. In this study, a swept horizontal axis wind turbine blade has been optimized to increase the aerodynamic efficiency using the computational fluid dynamics method. To illustrate the technique, a wind turbine with a rotor diameter of 0.94 m has been used as the baseline turbine, and the most appropriate swept blade design parameters, namely the sweep start-up section, tip displacement, and mode of the sweep have been investigated to obtain the maximum power coefficient at the design tip speed ratio. At this stage, a new equation that allows all three swept blade design parameters to be changed independently has been used to design swept blades, and the response surface method has been used to find out the optimum swept blade parameters. According to the results obtained, a significant increase of 4.28% in the power coefficient was achieved at the design tip speed ratio with the newly designed optimum swept wind turbine blade. Finally, baseline and optimum swept blades have been compared in terms of power coefficients at different tip speed ratios, force distributions, pressure distributions, and tip vortices.
URI
https://hdl.handle.net/11511/91605
Journal
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
DOI
https://doi.org/10.1115/1.4051469
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Aerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icing
Yirtici, Ozcan; Tuncer, İsmail Hakkı (2021-05-01)
Ice formation on a wind turbine alters the airfoil profiles of the blades and causes degradation in the aerodynamic performance of the wind turbine and the resulting power production losses. Since the blade profile plays a significant role in the icing of a blade, power production losses due to icing can be minimized by optimizing the blade profile against icing. In this study, blade profiles are optimized in order to minimize power production losses. A Gradient based aerodynamic shape optimization method i...
Aerodynamic validation studies on the performance analysis of iced wind turbine blades
YIRTICI, ÖZCAN; Cengiz, Kenan; Özgen, Serkan; Tuncer, İsmail Hakkı (Elsevier BV, 2019-10-15)
Ice accretion on wind turbine blades distorts blade profiles and causes degradation in the aerodynamic characteristic of the blades. In this study ice accretion on turbine blades are simulated under various icing conditions, and the resulting power losses are estimated. The Blade Element Momentum method is employed together with an ice accretion prediction methodology based on the Extended Messinger model in a parallel computing environment. The predicted iced profiles are first validated with the experimen...
Aerodynamic Shape Optimization for Reducing Ice Induced Losses on Wind Turbine Blades
Yırtıcı, Özcan; Tuncer, İsmail Hakkı (null; 2019-05-14)
Ice accretion on wind turbines modifies the blade shape profile and causes alteration in the aerodynamic characteristics of the blades. The objective of this study is to optimize the blade geometry to reduce performance losses by minimizing ice accretion in cold climate regions and mountainous areas where wind energy resources are plentifully found. In this study, The Gradient Based Optimization Method and Blade Element Momentum Method will be employed together with an ice accretion prediction tool for esti...
Aerodynamic shape optimization of wind turbine blades using a parallel genetic algorithm
Polat, Ozge; Tuncer, İsmail Hakkı (2013-12-31)
An aerodynamic shape optimization methodology based on Genetic Algorithm and Blade Element Momentum theory is developed for rotor blades of horizontal axis wind turbines Optimization studies are performed for the maximization of power production at a specific wind speed, rotor speed and rotor diameter. The potential flow solver with a boundary layer model, XFOIL, provides sectional aerodynamic loads. The sectional chord length, the sectional twist and the blade profiles at root, mid and tip regions of the b...
Computer-aided design of horizontal-axis wind turbine blades
Duran, Serhat; Albayrak, Kahraman; Department of Mechanical Engineering (2005)
Designing horizontal-axis wind turbine (HAWT) blades to achieve satisfactory levels of performance starts with knowledge of the aerodynamic forces acting on the blades. In this thesis, HAWT blade design is studied from the aspect of aerodynamic view and the basic principles of the aerodynamic behaviors of HAWTs are investigated. Blade-element momentum theory (BEM) known as also strip theory, which is the current mainstay of aerodynamic design and analysis of HAWT blades, is used for HAWT blade design in thi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. N. Kaya, F. Kose, O. Uzol, D. Ingham, L. Ma, and M. Pourkashanian, “Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade,”
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/91605.