Hide/Show Apps

Experimental and numarical investigation of carbon dioxide sequestration in deep saline aquifers

Download
2005
İzgeç, Ömer
Started as an EOR technique to produce oil, injection of carbon dioxide which is essentially a greenhouse gas is becoming more and more important. Although there are a number of mathematical modeling studies, experimental studies are limited and most studies focus on injection into sandstone reservoirs as opposed to carbonate ones. This study presents the results of computerized tomography (CT) monitored laboratory experiments to characterize relevant chemical reactions associated with injection and storage of CO2 in carbonate formations. Porosity changes along the core plugs and the corresponding permeability changes are reported for varying CO2 injection rates, temperature and salt concentrations. CT monitored experiments are designed to model fast near well bore flow and slow reservoir flows. It was observed that either a permeability improvement or a permeability reduction can be obtained. The trend of change in rock properties is very case dependent because it is related to distribution of pores, brine composition and as well the thermodynamic conditions. As the salt concentration decreased the porosity and thus the permeability decrease was less pronounced. Calcite scaling is mainly influenced by orientation and horizontal flow resulted in larger calcite deposition compared to vertical flow. The duration of CO2 ا rock contact and the amount of area contacted by CO2 seems to have a more pronounced effect compared to rate effect. The experiments were modeled using a multi-phase, non-isothermal commercial simulator where solution and deposition of calcite were considered by the means of chemical reactions. The calibrated model was then used to analyze field scale injections and to model the potential CO2 sequestration capacity of a hypothetical carbonate aquifer formation. It was observed that solubility and hydrodynamic storage of CO2 is larger compared to mineral