Modeling of carbon dioxide sequestration in a deep saline aquifer

Download
2005
Başbuğ, Başar
CO2 is one of the hazardous greenhouse gases causing significant changes in the environment. The sequestering CO2 in a suitable geological medium can be a feasible method to avoid the negative effects of CO2 emissions in the atmosphere. CO2 sequestration is the capture of, separation, and long-term storage of CO2 in underground geological environments. A case study was simulated regarding the CO2 sequestration in a deep saline aquifer. The compositional numerical model (GEM) of the CMG software was used to study the ability of the selected aquifer to accept and retain the large quantities of injected CO2 at supercritical state for long periods of time (200 years). A field-scale model with two injectors and six water producers and a single-well aquifer model cases were studied. In a single-well aquifer model, the effects of parameters such as vertical to horizontal permeability ratio, aquifer pressure, injection rate, and salinity on the sequestration process were examined and the sensitivity analyses were performed after simulating the field-scale model. The supercritical CO2, one-state fluid which exhibits both gas and liquid-like properties, and gaseous CO2 were sequestered in the forms of free CO2 bubble, dissolved CO2 in brine and precipitated CO2 with calcite mineral in a deep saline aquifer. The isothermal condition was assumed during injection and sequestration processes. The change in porosity and permeability values that might have occurred due to mineralization and CO2 adsorption on rock were not considered in this study. Vertical to horizontal permeability ratio and initial pressure conditions were the most dominating parameters affecting the CO2 saturation in each layer of the aquifer whereas CO2 injection rate influenced CO2 saturation in middle and bottom layers since CO2 was injected through bottom layer.

Suggestions

Simulating the effects of deep saline aquifer properties for CO2 sequestration
Basbug, B.; Gumrah, F.; Oz, B. (2007-10-01)
CO2 is one of the hazardous greenhouse gases causing significant changes to the environment. The sequestering of CO2 in a suitable geological media can be a feasible method to avoid the negative effects of CO2 emissions into the atmosphere. A numerical model was developed regarding CO2 sequestration in a deep saline aquifer. A compositional numerical model using CMG software (GEM) was employed to study the ability of the selected aquifer to accept and retain large quantities of CO2 injected in a supercritic...
Investigation of activated sludge bioflocculation : influence of magnesium ions
Turtin, İpek; Sanin, Faika Dilek; Department of Environmental Engineering (2005)
Activated sludge systems are the most widely used biological wastewater treatment processes all over the world. The main working principles of an activated sludge system are the oxidation of biologically degradable wastes by microorganisms and the subsequent separation of the newly formed biomass from the treated effluent. Separation by settling is the most troublesome stage of an activated sludge process. A decrease in the efficiency of the separation of microbial biomass from the treated effluent causes a...
Modeling of enhanced coalbed methane recovery from Amasra coalbed in Zonguldak coal basin
Sınayuç, Çağlar; Gümrah, Fevzi; Department of Petroleum and Natural Gas Engineering (2007)
The increased level of greenhouse gases due to human activity is the main factor for climate change. CO2 is the main constitute among these gases. Subsurface storage of CO2 in geological systems such as coal reservoirs is considered as one of the promising perspectives. Coal can be safely and effectively utilized to both store CO2 and recover CH4. By injecting CO2 into the coal beds, methane is released with CO2 adsorption in the coal matrix and this process is known as enhanced coal bed methane recovery (E...
Modeling binary CO2/CH4 flow through coal media
Gumrah, F.; Balan, H. O.; Atay, M. U. (Informa UK Limited, 2008-01-01)
CO2 can be sequestered in coal seams considering the environmental issues. By means of injecting CO2 into the coal seams, both sequestration of CO2 and the enhanced recovery of methane inside the coal seam can be realized. One-dimensional simulation regarding the binary CO2/CH4 flow in a coal seam core was studied by using an analytical solution method. The simulation results were compared with experimental data by matching the effluent concentrations of CO2 and CH4. The transport parameters such as longitu...
Modelling of carbon sink capacity of the Black Sea
Cengiz, Yelis; Yılmaz, Ayşen; Yücel, İsmail; Department of Earth System Science (2016)
The concentration of carbon dioxide in the atmosphere is constantly increasing due to human activities and results in global warming. Since Industrial Revolution 30 and 25 percentages of the anthropogenic atmospheric carbon dioxide are taken up by the forests and by the oceans respectively. Carbon dioxide is rising faster than biosphere can tolerate and the rest of the carbon dioxide which can not be hold, continues to accumulate and causes further heating of the atmosphere. The carbon sink capacity of the ...
Citation Formats
B. Başbuğ, “Modeling of carbon dioxide sequestration in a deep saline aquifer,” M.S. - Master of Science, Middle East Technical University, 2005.