Evolving aggregation behaviors for swarm robotics systems: a systematic case study

Download
2005
Bahçeci, Erkin
Evolutionary methods are shown to be useful in developing behaviors in robotics. Interest in the use of evolution in swarm robotics is also on the rise. However, when one attempts to use artificial evolution to develop behaviors for a swarm robotic system, he is faced with decisions to be made regarding some parameters of fitness evaluations and of the genetic algorithm. In this thesis, aggregation behavior is chosen as a case, where performance and scalability of aggregation behaviors of perceptron controllers that are evolved for a simulated swarm robotic system are systematically studied with different parameter settings. Using a cluster of computers to run simulations in parallel, four experiments are conducted varying some of the parameters. Rules of thumb are derived, which can be of guidance to the use of evolutionary methods to generate other swarm robotic behaviors as well.

Suggestions

A mathematical contribution of statistical learning and continuous optimization using infinite and semi-infinite programming to computational statistics
Özöğür-Akyüz, Süreyya; Weber, Gerhard Wilhelm; Department of Scientific Computing (2009)
A subfield of artificial intelligence, machine learning (ML), is concerned with the development of algorithms that allow computers to “learn”. ML is the process of training a system with large number of examples, extracting rules and finding patterns in order to make predictions on new data points (examples). The most common machine learning schemes are supervised, semi-supervised, unsupervised and reinforcement learning. These schemes apply to natural language processing, search engines, medical diagnosis,...
Robot planing based on learned affordances
Çakmak, Maya; Şahin, Erol; Department of Computer Engineering (2007)
This thesis studies how an autonomous robot can learn affordances from its interactions with the environment and use these affordances in planning. It is based on a new formalization of the concept which proposes that affordances are relations that pertain to the interactions of an agent with its environment. The robot interacts with environments containing different objects by executing its atomic actions and learns the different effects it can create, as well as the invariants of the environments that aff...
Direct perception of traversibility affordance on range images through learning on a mobile robot
Uğur, Emre; Şahin, Erol; Department of Computer Engineering (2006)
In this thesis, we studied how physical affordances of the environment, such as traversibility for a mobile robot, can be learned. In particular, we studied how the physical properties of the environment, as acquired from range images obtained from a 3D laser scanner mounted on a mobile robot platform, can specify the traversibility affordance. A physics based simulation environment is used during exploration trials, where the traversibility affordances and the relevant features for each behavior are learne...
Using learned affordances for robotic behavior development
Doğar, Mehmet Remzi; Şahin, Erol; Department of Civil Engineering (2007)
“Developmental robotics” proposes that, instead of trying to build a robot that shows intelligence once and for all, what one must do is to build robots that can develop. A robot should go through cognitive development just like an animal baby does. These robots should be equipped with behaviors that are simple but enough to bootstrap the system. Then, as the robot interacts with its environment, it should display increasingly complex behaviors. Studies in developmental psychology and neurophysiology provid...
A hypercomputational approach to the agent causation theory of free will
Mersin, Serhan; Sayan, Erdinç; Department of Cognitive Sciences (2006)
Hypercomputation, which is the general concept embracing all machinery capable of carrying out more tasks than Turing Machines and beyond the Turing Limit, has implications for various fields including mathematics, physics, computer science and philosophy. Regarding its philosophical aspects, it is necessary to reveal the position of hypercomputation relative to the classical computational theory of mind in order to clarify and broaden the scope of hypercomputation so that it encompasses some phenomena whic...
Citation Formats
E. Bahçeci, “Evolving aggregation behaviors for swarm robotics systems: a systematic case study,” M.S. - Master of Science, Middle East Technical University, 2005.