Robot planing based on learned affordances

Download
2007
Çakmak, Maya
This thesis studies how an autonomous robot can learn affordances from its interactions with the environment and use these affordances in planning. It is based on a new formalization of the concept which proposes that affordances are relations that pertain to the interactions of an agent with its environment. The robot interacts with environments containing different objects by executing its atomic actions and learns the different effects it can create, as well as the invariants of the environments that afford creating that effect with a certain action. This provides the robot with the ability to predict the consequences of its future interactions and to deliberatively plan action sequences to achieve a goal. The study shows that the concept of affordances provides a common framework for studying reactive control, deliberation and adaptation in autonomous robots. It also provides solutions to the major problems in robot planning, by grounding the planning operators in the low-level interactions of the robot.

Suggestions

Direct perception of traversibility affordance on range images through learning on a mobile robot
Uğur, Emre; Şahin, Erol; Department of Computer Engineering (2006)
In this thesis, we studied how physical affordances of the environment, such as traversibility for a mobile robot, can be learned. In particular, we studied how the physical properties of the environment, as acquired from range images obtained from a 3D laser scanner mounted on a mobile robot platform, can specify the traversibility affordance. A physics based simulation environment is used during exploration trials, where the traversibility affordances and the relevant features for each behavior are learne...
Evolving aggregation behaviors for swarm robotics systems: a systematic case study
Bahçeci, Erkin; Şahin, Erol; Department of Computer Engineering (2005)
Evolutionary methods are shown to be useful in developing behaviors in robotics. Interest in the use of evolution in swarm robotics is also on the rise. However, when one attempts to use artificial evolution to develop behaviors for a swarm robotic system, he is faced with decisions to be made regarding some parameters of fitness evaluations and of the genetic algorithm. In this thesis, aggregation behavior is chosen as a case, where performance and scalability of aggregation behaviors of perceptron control...
Resource based plan revision in dynamic multi-agent environments
Erdoğdu, Utku; Polat, Faruk; Department of Computer Engineering (2004)
Planning framework is commonly used to represent intelligent agents effectively and to model complex behavior. In planning framework, resource-based perspective is interesting in the sense that in a multi-agent environment, exchange of resources can form a cooperative interaction. In resource based plan coordination, each agent constructs an individual plan, then plans are examined by a central plan revision unit for possibilities of removing actions. Domain of this work is the classical postmen domain that...
Moving object identification and event recognition in video surveillance systems
Örten, Burkay Birant; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2005)
This thesis is devoted to the problems of defining and developing the basic building blocks of an automated surveillance system. As its initial step, a background-modeling algorithm is described for segmenting moving objects from the background, which is capable of adapting to dynamic scene conditions, as well as determining shadows of the moving objects. After obtaining binary silhouettes for targets, object association between consecutive frames is achieved by a hypothesis-based tracking method. Both of t...
Human motion analysis via axis based representations
Erdem, Sezen; Tarı, Zehra Sibel; Department of Computer Engineering (2007)
Visual analysis of human motion is one of the active research areas in computer vision. The trend shifts from computing motion fields to understanding actions. In this thesis, an action coding scheme based on trajectories of the features calculated with respect to a part based coordinate system is presented. The part based coordinate system is formed using an axis based representation. The features are extracted from images segmented in the form of silhouettes. We present some preliminary experiments that d...
Citation Formats
M. Çakmak, “Robot planing based on learned affordances,” M.S. - Master of Science, Middle East Technical University, 2007.