Use of calcium alginate as a coagulant in water treatment

Çoruh, Hale Aylin
Coagulation and flocculation processes are important parts of water and wastewater treatment. Coagulation or destabilization of colloidal suspensions results in aggregation of colloidal particles by physical and chemical processes. Flocculation results in the formation of larger and settleable structures by bridging. Alginate, a polysaccharide obtained from marine brown algae, produces a gel structure when mixed with calcium ions, which is expected to be a potential coagulant in water treatment. This study aims to determine the use of calcium alginate as a potential coagulant during water treatment and determine its capabilities and deficiencies in coagulation processes. The study was conducted on turbid water samples prepared in the laboratory and those taken from the inlet of Ankara İvedik Water Treatment Plant (IWTP) by running typical jar tests. The main experimental variables were initial alginate and calcium doses, initial turbidity of water samples and the order with which the two chemicals are dosed. The main criteria investigated to check the success of the system was the final turbidity values and the turbidity removal capacity of calcium- alginate. Experiments were conducted on three different laboratory ا prepared turbid water samples and on the raw water taken from the inlet point of Ankara İvedik Drinking Water Treatment Plant (IWTP). These were prepared as high (150 NTU) medium (80 NTU) and low (10 NTU) turbidity samples. The calcium concentrations tested varied between 30 and 200 mg/L and alginate concentrations tested varied between 0.04 to 40 mg/L. Depending on the initial turbidity and initial calcium concentration of water sample the results depict that calcium alginate could be used as an effective coagulant for high (150 NTU) and medium (80 NTU) turbidity water sample especially at the calcium doses of 120 and 160 mg/L for low alginate


Living radical polymerization of hydroxyethyl methacrylate and its block copolymerization with poly(dimethyl siloxane) macroazoinitiator
Vargün, Elif; Usanmaz, Ali; Department of Polymer Science and Technology (2009)
Hydrophilic poly(2-hydroxyethyl methacrylate), PHEMA, and hydrophobic poly(dimethyl siloxane), PDMS, segments containing copolymers have been widely used as a biomaterial. These amphiphilic copolymers also used as an emulsifying agent in polymer solutions and compatibilizer in polymer blends. In this case, solution polymerizations of HEMA by radiation, ATRP and RAFT methods were studied. The thermal degradation mechanism of PHEMA, which was prepared in aqueous solution by gamma radiation technique, was stud...
Performance of ozone and peroxone on the removal of endocrine disrupting chemicals (EDCs) coupled with cost analysis
Ölmez Hancı, Tuğba; Dogruel, S.; Emek, A. D. Allar; Yilmazer, C. Eropak; Cinar, S.; Kiraz, O.; Citil, E.; Orhon, A. Koc; Siltu, E.; Gucver, S. M.; Ozgun, O. Karahan; Tanık, Ayşe Gül; Yetiş, Ülkü (IWA Publishing, 2020-08-01)
Micropollutants such as endocrine disruptors are one of the most important groups of chemicals polluting water resources. Conventional treatment systems may not be effective for the removal of endocrine disrupting chemicals (EDCs), and the fate of these chemicals should be carefully monitored in the effluent of wastewater treatment plants (WWTPs). Additional treatment methods such as advanced oxidation processes can be used for the removal of endocrine disruptors. This study presents the existence of endocr...
Qualitative evaluations about the disinfection capabilities of a water distribution network : a model study
Nadiroğlu, Coşkun; Köken, Mete; Aydın, İsmail; Department of Civil Engineering (2014)
“Chlorine” is one of the major disinfectants extensively used in distribution systems that neutralizes the disease-causing organisms. This model study evaluates the disinfection capabilities of a specific water distribution network N8.3 of Ankara water distribution system under various operating conditions. N8.3 supplies water, roughly to 40,000 people. The network is served by a pump station and pumping schedule is critical concerning the occurrence of minimum chlorine concentrations. Continuous “blind” pu...
Investigation of zinc and lead removel from aqueous solutions using clinoptilolite
Moralı, Nihan; İmamoğlu, İpek; Department of Environmental Engineering (2006)
Natural zeolites, especially clinoptilolite, have the ability of removing certain cations from wastewater by utilizing ion exchange and adsorption. In this study, clinoptilolite originated from Bigadiç, Balıkesir deposit was investigated in its natural and conditioned form for its effectiveness in removing Zn2+ and Pb2+ ions from aqueous solutions. In addition, relevant mechanisms involved in heavy metal removal by clinoptilolite were examined in this study. Throughout this work, equilibrium and kinetic stu...
Oxidation off acid red 151 solutions by peroxone(o3/h2o2) process
Acar, Ebru; Adalı, Orhan; Department of Chemical Engineering (2004)
Wastewaters from textile industry contain organic dyes, which cannot be easily treated by biological methods. Therefore, pretreatment by an advanced oxidation process (AOP) is needed in order to produce more readily biodegradable compounds and to remove color and chemical oxygen demand (COD) simultaneously. In this research, ozone (O3) is combined with hydrogen peroxide (H2O2) for the advanced oxidation of an azo dye solution, namely aqueous solution of Acid Red 151, which is called as أPeroxone processؤ. T...
Citation Formats
H. A. Çoruh, “Use of calcium alginate as a coagulant in water treatment,” M.S. - Master of Science, Middle East Technical University, 2005.