Experimental investigation of local scour around inclined dual bridge piers

Çeşme, Murat
For a bridge engineer, it is very important to estimate the maximum scour depth around the piers as accurately as possible, in order to design the footing safely. Many experimental studies have been performed by several investigators until now, in order to obtain information about scouring mechanism. The aim of this experimental study is to examine the effect of inclination of the dual bridge piers on scour depth. The experiments have been conducted with dual pier models under clear-water conditions, for various uniform flow depths. Scour depths had been measured at four different points around the piers; namely upstream and downstream faces of both piers. Dimensional and non-dimensional scour curves have been developed and presented to show the temporal variation of scour depth. The depths of local scour around inclined piers have been observed to be smaller than the scour depths around vertical piers.


Study of time-depenbent local scour around bridge piers
Yanmaz, Ali Melih (1991-01-01)
Estimation of maximum possible scour depth around bridge piers is an important step in the design of bridge pier foundations. Under known hydrological characteristics such as peak discharge and time-to-peak value of design flood hydrograph, smaller scour depths can be obtained compared to the equilbrium scour depths corresponding to clear water conditions. To examine such a phenomenon, time variation of local scour depths around bridge piers has to be determined. To this end, sets of experiments are perform...
Experimental investigation of local scour around bridge pier groups
Özalp, Murat Can; Bozkuş, Zafer; Department of Civil Engineering (2013)
It is an important task that design engineers in practice predict the local scour around bridge piers as accurately as possible because excessive local scour around bridge piers unbalance and demolish the bridges. Many equations have been proposed previously by various researchers, based on their experimental findings, but no general method has been developed so far due to the complexity of the topic. In the present study two new bridge pier groups were employed to investigate the inclination effect of the ...
Reliability based safety level evaluation of Turkish type precast prestressed concrete bridge girders designed in accordance with the load and resistance factor design method
Argınhan, Oktay; Caner, Alp; Yücemen, Mehmet Semih; Department of Civil Engineering (2010)
The main aim of the present study is to evaluate the safety level of Turkish type precast prestressed concrete bridge girders designed according to American Association of State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) based on reliability theory. Span lengths varying from 25 m to 40 m are considered. Two types of design truck loading models are taken into account: H30S24-current design live load of Turkey and HL93-design live load model of AASHTO LRFD. The statis...
Experimental Determination of Resistance Characteristics of Support Details Used in Prestressed Concrete Bridge Girders
Baran, Eray; French, Catherine; Schultz, Arturo (American Society of Civil Engineers (ASCE), 2009-09-01)
Static load tests were performed on support details used at the ends of prestressed concrete pedestrian bridge girders to determine the resistance characteristics of girder supports in the direction perpendicular to the longitudinal axis of the girders. The specimens tested represent support details that have also been widely used in prestressed concrete highway bridges in Minnesota and in other states. Two specimens, one representing the free-end detail and one representing the restrained-end detail were s...
Reliability-based optimization of river bridges using artificial intelligence techniques
Turan, K. Hakan; Yanmaz, Ali Melih (Canadian Science Publishing, 2011-10-01)
Proper bridge design is based on joint consideration of structural, hydraulic, and geotechnical conformities. An optimization-based methodology has been developed to obtain appropriate dimensions of a river bridge to meet these aspects. Structural and geotechnical design parts use a statistically-based artificial neural network (ANN) model. Therefore, relevant data were collected from many bridge projects and analyzed to form a matrix. Artificial neural network architectures are used in the objective functi...
Citation Formats
M. Çeşme, “Experimental investigation of local scour around inclined dual bridge piers,” M.S. - Master of Science, Middle East Technical University, 2005.