Effect of TiH2 particle size on foaming of aluminium

Download
2005
Kubilay, Ceylan
A study is carried out on the production of aluminum foams via powder processing. The study deals mainly with the effect of TiH2 particle size on the process of foaming. Mainly two TiH2 particle sizes were used; namely 27,5 ?m and 8,5 ?m. Foaming experiments were carried out at temperatures between 675oC ا 840oC. The viscosity of the system is adjusted by controlled addition of Al2O3. The study shows that choice of foaming agent size is influential in the foaming process. With the use of fine foaming agent, temperatures in excess of 800oC would be required for successful foaming. The study further showed that the relation between foaming and viscosity was also dependent on the particle size. Viscosity of 2.3 mPa.s was found to be a limiting value for successful foaming with fine foaming agent. This value appears to increase with increasing particle size. An analysis is presented with regard to temperature dependence of foaming which takes into account the effect of particle size.

Suggestions

Effect of retrogression and reaging heat treatment on corrosion fatigue crack growth behavior of AA7050 alloy
Akgün, Nevzat; Gürbüz, Rıza; Department of Metallurgical and Materials Engineering (2004)
The effect of retrogression and reaging heat treatment on corrosion fatigue crack growth behavior on AA7050 T73651 aluminum alloy is investigated. CT (Compact Tension) specimens are prepared in LS direction for fatigue crack growth tests . Samples are solution heat treated at 477 °C and aged at 120 °C for 24 h (T6 condition). After that, samples are retrogressed at 200 °C for times of 1, 5, 30, 55 and 80 minutes in a circulating oil bath. Then, samples are re-aged at 120 °C for 24 h (T6 condition). Hardness...
Aluminum Oxide and Titanium Diboride Reinforced Metal Matrix Composite and Its Mechanical Properties
Kurtoğlu, Aziz; Sevinç, Naci; Department of Metallurgical and Materials Engineering (2004)
This study is on the production and testing of an aluminum metal matrix composite. Metal Matrix Composites can be produced in several different ways. In this study, an aluminum matrix composite is produced by direct addition of the reinforcement ceramic into the liquid metal. The ceramic reinforcement for this process was a mixture of TiB2 and Al2O3 which was produced by means of a thermite reaction of reactants Al, B2O3 and TiO2 all in powder form with their respective stoichiometric amounts. This ceramic ...
Influence of B2O3 additions on the microstructure of mica based glass-ceramics
Aykut, Hakan; Öztürk, Abdullah; Department of Metallurgical and Materials Engineering (2005)
Mica based glass - ceramics have been produced by subjecting the glasses in the SiO2 , Al2O3 , CaO , MgO, K2O , and F system to a controlled heat treatment called crystallization. TiO2 was added into the batch in the amount of 1 wt% of the glass as nucleating agent. B2O3 additions in the amounts of 1, 2, 4 and 8 wt% of the glass have been made in the batch to see and evaluate the effects of B2O3 additions on the texture of the mica glass ceramics. Crystallization was accomplished in two steps, nucleation an...
Production and characterization of porous titanium alloys
Esen, Ziya; Bor, Şakir; Department of Metallurgical and Materials Engineering (2007)
In the present study, production of titanium and Ti6Al4V alloy foams has been investigated using powder metallurgical “space holder technique” in which magnesium powder were utilized to generate porosities in the range 30 to 90 vol. %. Also, sintering of titanium and Ti-6Al-4V alloy powders in loose and compacted condition at various temperatures (850-1250oC) and compaction pressures (120-1125 MPa), respectively, were investigated to elucidate the structure and mechanical properties of the porous cell walls...
Determination of susceptibility to intergranular corrosion in AISI 304L and 316L type stainless steels by electrochemical reactivation method
Aydoğdu, Gülgün Hamide; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2004)
Austenitic stainless steels have a major problem during solution annealing or welding in the temperature range of 500-800 °C due to the formation of chromium carbide, which causes chromium depleted areas along grain boundaries. This means that the structure has become sensitized to intergranular corrosion. Susceptibility to intergranular corrosion can be determined by means of destructive acid tests or by nondestructive electrochemical potentiokinetic reactivation (EPR) tests. The EPR test, which provides q...
Citation Formats
C. Kubilay, “Effect of TiH2 particle size on foaming of aluminium,” M.S. - Master of Science, Middle East Technical University, 2005.