Finite element modeling of stress evolution in quenching process

Doğu, Doruk
In this thesis the finite element computer code QUEANA simulating the quenching of axisymetric parts and determining the residual stress state was improved by adding pre- and post-processors. The code was further verified by additional numerical experiments and comparison of the results with commercial software أMARCؤ. The possible applications of this code are optimization of industrial quenching processes by controlling the evolution of internal stresses and dimensional changes.


Theoretical and experimental investigation of bulk glass forming ability in bulk amorphous alloy systems
Ayas, Can; Mekrabov, Amdulla O.; Department of Metallurgical and Materials Engineering (2005)
In this study molecular dynamics simulation program in NVT ensemble using Velocity Verlet integration was written in order to investigate the glass forming ability of two metallic systems. The Zn-Mg system, one of the frontiers of simple metal-metal metallic glasses and Fe-B, inquiring attention due to presence of many bulk glass forming alloy systems evolved from this binary with different alloying element additions. In addition to this, atomistic calculations on the basis of ordering were carried out for ...
Intermetallic phase formation at Fe-Al film interefaces
Temizel, Güvenç; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2006)
This thesis presents the formation mechanism of intermetallics formed at Fe-Al film interfaces. Al thin films with different initial film thicknesses were coated on low carbon steel substrates by physical vapor deposition (PVD). By annealing the system at different temperatures and for different time intervals, several intermetallic phases were observed. X-Ray, SEM and EDS studies showed that intermetallic phases FeAl2 and Fe2Al5 are most dominant phases which were observed and they formed sequentially on t...
Non-equilibrium molecular dynamics of electromigration in aluminum and its alloys
Şen, Fatih Gürçağ; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2006)
With constant miniaturization of integrated circuits, the current densities experienced in interconnects in electronic circuits has been multiplied. Aluminum, which is widely used as an interconnect material, has fast diffusion kinetics under low temperatures. Unfortunately, the combination of high current density and fast diffusion at low temperatures causes the circuit to fail by electromigration (EM), which is the mass transport of atoms due to the momentum transfer between conducting electrons and diffu...
Microstructural characterization of hypoeutectoid steels quenched from the Ae1 - Ae3 intercritical temperature range by magnetic barkhausen noise technique
Boyacıoğlu, Beril; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2006)
This thesis aims to examine the possibility of using Magnetic Barkhausen Noise technique in characterizing the ferritic-martensitic microstructure of hypoeutectoid steels quenched from the intercritical temperature range. For this purpose, rectangular specimens were prepared from SAE 1020, 1040 and 1060 steels. The specimens were heated at different temperatures within the intercritical temperature range and then quenched into water. Microstructures of the specimens were characterized by metallographic exam...
Microstructural and elecrochemical characterization of Ti-6A1-4V ELI alloy
Topçuoğlu, Melih; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2006)
In this study, the evolution of structure and the relationship between microstructure and corrosion behavior of the Ti-6Al-4V ELI (Extra Low Interstitial) alloy was investigated in Ringer’s solution at 37 ± 0.1 oC. Initially, different heat treatments were performed in order to obtain several microstructures which were; Widmanstätten α for furnace cooling (FC), basket-weave α for air cooling (AC), martensite (α') for water quenching (WQ) from 1060 oC, and aged martensite for ten hours at 500, 600, 700, 800,...
Citation Formats
D. Doğu, “Finite element modeling of stress evolution in quenching process,” M.S. - Master of Science, Middle East Technical University, 2005.