Development of a micro-fabrication process simulator for micro-electro-mechanical systems(mems)

Download
2005
Yıldırım, Alper
The aim of this study is to devise a computer simulation tool, which will speed-up the design of Micro-Electro-Mechanical Systems by providing the results of the micro-fabrication processes in advance. Anisotropic etching along with isotropic etching of silicon wafers are to be simulated in this environment. Similarly, additive processes like doping and material deposition could be simulated by means of a Cellular Automata based algorithm along with the use of OpenGL library functions. Equipped with an integrated mask design editor, complex mask patterns can be created by the software and the results are displayed by the Cellular Automata cells based on their spatial location and plane. The resultant etched shapes are in agreement with the experimental results both qualitatively and quantitatively. Keywords: Wet Etching, Anisotropic Etching, Doping, Cellular Automata, Micro-fabrication simulation, Material Deposition, Isotropic Etching, Dry Etching, Deep Reactive Ion Etching

Suggestions

Prediction of slip in cable-drum systems using structured neural networks
KILIÇ, Ergin; Dölen, Melik (SAGE Publications, 2014-02-01)
This study focuses on the slip prediction in a cable-drum system using artificial neural networks for the prospect of developing linear motion sensing scheme for such mechanisms. Both feed-forward and recurrent-type artificial neural network architectures are considered to capture the slip dynamics of cable-drum mechanisms. In the article, the network development is presented in a progressive (step-by-step) fashion for the purpose of not only making the design process transparent to the readers but also hig...
Design scaling of aeroballistic range models
Kutluay, Ümit; Balkan, Raif Tuna; Department of Mechanical Engineering (2004)
The aim of this thesis is to develop a methodology for obtaining an optimum configuration for the aeroballistic range models. In the design of aeroballistic range models, there are mainly three similarity requirements to be matched between the model and the actual munition: external geometry, location of the centre of gravity and the ratio of axial mass moment of inertia to the transverse mass moment of inertia. Furthermore, it is required to have a model with least possible weight, so that the required tes...
Uncertainty Analysis of Heat Transfer Predictions Using Statistically Modeled Data From a Cooled 1-1/2 Stage High-Pressure Transonic Turbine
Kahveci, Harika Senem (ASME International, 2014-06-01)
This paper compares predictions from a 3D Reynolds-averaged Navier-Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, the wall temperature, and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically modeled temperature p...
Uncertainty analysis of coordinate measuring machine (CMM) measurements
Sözak, Ahmet; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2007)
In this thesis, the measurement uncertainty of Coordinate Measuring Machine (CMM) is analysed and software is designed to simulate this. Analysis begins with the inspection of the measurement process and structure of the CMMs. After that, error sources are defined with respect to their effects on the measurement and then an error model is constructed to compensate these effects. In other words, systematic part of geometric, kinematic and thermal errors are compensated with error modelling. Kinematic and geo...
Experimental investigation of a spherical solar collector
Bakır, Öztekin; Yamalı, Cemil; Department of Mechanical Engineering (2006)
The purpose of this study is to investigate the performance of a spherical solar collector by using numerical and experimental methods. For this analysis, equations were obtained by choosing appropriate control volumes in the system and applying The First Law of Thermodynamics. The experiments were realized at four different mass flow rates and non-flow situation. For the numerical simulation of the system, a computer program in Mathcad was written. Another computer program in Mathcad was written for the va...
Citation Formats
A. Yıldırım, “Development of a micro-fabrication process simulator for micro-electro-mechanical systems(mems),” M.S. - Master of Science, Middle East Technical University, 2005.