Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental investigation of a spherical solar collector
Download
index.pdf
Date
2006
Author
Bakır, Öztekin
Metadata
Show full item record
Item Usage Stats
303
views
293
downloads
Cite This
The purpose of this study is to investigate the performance of a spherical solar collector by using numerical and experimental methods. For this analysis, equations were obtained by choosing appropriate control volumes in the system and applying The First Law of Thermodynamics. The experiments were realized at four different mass flow rates and non-flow situation. For the numerical simulation of the system, a computer program in Mathcad was written. Another computer program in Mathcad was written for the variation of the absorbed solar radiation through out the day. Finally, the performance of the spherical solar collector is compared theoretically to that of flat plate solar collectors.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12607205/index.pdf
https://hdl.handle.net/11511/15879
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Uncertainty Analysis of Heat Transfer Predictions Using Statistically Modeled Data From a Cooled 1-1/2 Stage High-Pressure Transonic Turbine
Kahveci, Harika Senem (ASME International, 2014-06-01)
This paper compares predictions from a 3D Reynolds-averaged Navier-Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, the wall temperature, and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically modeled temperature p...
Uncertainty analysis of coordinate measuring machine (CMM) measurements
Sözak, Ahmet; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2007)
In this thesis, the measurement uncertainty of Coordinate Measuring Machine (CMM) is analysed and software is designed to simulate this. Analysis begins with the inspection of the measurement process and structure of the CMMs. After that, error sources are defined with respect to their effects on the measurement and then an error model is constructed to compensate these effects. In other words, systematic part of geometric, kinematic and thermal errors are compensated with error modelling. Kinematic and geo...
Experimental investigation and modeling of dropwise condensation on a horizontal gold coated tube /
Serdar, Orhan; Yamalı, Cemil; Department of Mechanical Engineering (2004)
The phenomenon dropwise condensation on a horizontal gold coated tube is investigated by both analytical and experimental methods in this study. A computer program is prepared to calculate the dropwise condensation heat transfer rate on the horizontal gold coated tube. An experimental setup was also manufactured to measure the dropwise condensation heat transfer rate. The effects of flow rate, temperature of cooling water and also steam to wall temperature difference have been analytically investigated by u...
Development of test structures and methods for characterization of MEMS materials
Yıldırım, Ender; Arıkan, Mehmet Ali Sahir; Department of Mechanical Engineering (2005)
This study concerns with the testing methods for mechanical characterization at micron scale. The need for the study arises from the fact that the mechanical properties of materials at micron scale differ compared to their bulk counterparts, depending on the microfabrication method involved. Various test structures are designed according to the criteria specified in this thesis, and tested for this purpose in micron scale. Static and fatigue properties of the materials are aimed to be extracted through the ...
Development of a micro-fabrication process simulator for micro-electro-mechanical systems(mems)
Yıldırım, Alper; Dölen, Melik; Department of Mechanical Engineering (2005)
The aim of this study is to devise a computer simulation tool, which will speed-up the design of Micro-Electro-Mechanical Systems by providing the results of the micro-fabrication processes in advance. Anisotropic etching along with isotropic etching of silicon wafers are to be simulated in this environment. Similarly, additive processes like doping and material deposition could be simulated by means of a Cellular Automata based algorithm along with the use of OpenGL library functions. Equipped with an inte...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Bakır, “Experimental investigation of a spherical solar collector,” M.S. - Master of Science, Middle East Technical University, 2006.