Synthesis of compliant bistable four-link mechanisms for two positions

Download
2005
Subaşı, Levent
The aim of this study is to present a design approach for compliant bistable four-link mechanisms. The design constraints are the two positions of the mechanism, the force required to snap between the positions and the fatigue life of the designed mechanism. The theory presented here will be applied to the door lock mechanism used in commercial dishwashers, which is originally designed as a rigid inverted slider crank mechanism snapping between two positions with the force applied by a spring. The mechanism is re-designed as a compliant bistable four-link mechanism and a prototype has been manufactured.

Suggestions

Prediction of slip in cable-drum systems using structured neural networks
KILIÇ, Ergin; Dölen, Melik (SAGE Publications, 2014-02-01)
This study focuses on the slip prediction in a cable-drum system using artificial neural networks for the prospect of developing linear motion sensing scheme for such mechanisms. Both feed-forward and recurrent-type artificial neural network architectures are considered to capture the slip dynamics of cable-drum mechanisms. In the article, the network development is presented in a progressive (step-by-step) fashion for the purpose of not only making the design process transparent to the readers but also hig...
Development of test structures and methods for characterization of MEMS materials
Yıldırım, Ender; Arıkan, Mehmet Ali Sahir; Department of Mechanical Engineering (2005)
This study concerns with the testing methods for mechanical characterization at micron scale. The need for the study arises from the fact that the mechanical properties of materials at micron scale differ compared to their bulk counterparts, depending on the microfabrication method involved. Various test structures are designed according to the criteria specified in this thesis, and tested for this purpose in micron scale. Static and fatigue properties of the materials are aimed to be extracted through the ...
Design scaling of aeroballistic range models
Kutluay, Ümit; Balkan, Raif Tuna; Department of Mechanical Engineering (2004)
The aim of this thesis is to develop a methodology for obtaining an optimum configuration for the aeroballistic range models. In the design of aeroballistic range models, there are mainly three similarity requirements to be matched between the model and the actual munition: external geometry, location of the centre of gravity and the ratio of axial mass moment of inertia to the transverse mass moment of inertia. Furthermore, it is required to have a model with least possible weight, so that the required tes...
Fatigue crack growth analysis models for funcionally graded materials
Sabuncuoğlu, Barış; Dağ, Serkan; Department of Mechanical Engineering (2006)
The objective of this study is to develop crack growth analysis methods for functionally graded materials under mode I cyclic loading by using finite element technique. The study starts with the analysis of test specimens which are given in ASTM standard E399. The material properties of specimens are assumed to be changing along the thickness direction according to a presumed variation function used for the modeling of functionally graded materials. The results of the study reveal the influence of different...
Analysis and design of a compliant variable stroke mechanism
TANIK, ENGİN; Söylemez, Eres (Elsevier BV, 2010-10-01)
In this paper, analysis and design of an underactuated compliant variable stroke mechanism are presented by employing its pseudo-rigid-body model (PRBM). During the design two cases are considered: prescribed output loading and constant input torque. It is shown that this mechanism is suitable where variable stroke is required corresponding to variable output loading. It is also observed that this mechanism is capable of providing nearly constant force over a wide range of input. The analysis and design app...
Citation Formats
L. Subaşı, “Synthesis of compliant bistable four-link mechanisms for two positions,” M.S. - Master of Science, Middle East Technical University, 2005.