# Sturm comparison theory for impulsive differential equations

2005
Özbekler, Abdullah
In this thesis, we investigate Sturmian comparison theory and oscillation for second order impulsive differential equations with fixed moments of impulse actions. It is shown that impulse actions may greatly alter the oscillation behavior of solutions. In chapter two, besides Sturmian type comparison results, we give Leightonian type comparison theorems and obtain Wirtinger type inequalities for linear, half-linear and non-selfadjoint equations. We present analogous results for forced super linear and super half-linear equations with damping. In chapter three, we derive sufficient conditions for oscillation of nonlinear equations. Integral averaging, function averaging techniques as well as interval criteria for oscillation are discussed. Oscillation criteria for solutions of impulsive Hill̕s equation with damping and forced linear equations with damping are established.

# Suggestions

 Asymptotic integration of impulsive differential equations Doğru Akgöl, Sibel; Ağacık, Zafer; Özbekler, Abdullah; Department of Mathematics (2017) The main objective of this thesis is to investigate asymptotic properties of the solutions of differential equations under impulse effect, and in this way to fulfill the gap in the literature about asymptotic integration of impulsive differential equations. In this process our main instruments are fixed point theorems; lemmas on compactness; principal and nonprincipal solutions of impulsive differential equations and Cauchy function for impulsive differential equations. The thesis consists of five chapters....
 Periodic solutions and stability of differential equations with piecewise constant argument of generalized type Büyükadalı, Cemil; Akhmet, Marat; Department of Mathematics (2009) In this thesis, we study periodic solutions and stability of differential equations with piecewise constant argument of generalized type. These equations can be divided into three main classes: differential equations with retarded, alternately advanced-retarded, and state-dependent piecewise constant argument of generalized type. First, using the method of small parameter due to Poincaré, the existence and stability of periodic solutions of quasilinear differential equations with retarded piecewise constant...
 Studies on the perturbation problems in quantum mechanics Koca, Burcu; Taşeli, Hasan; Department of Mathematics (2004) In this thesis, the main perturbation problems encountered in quantum mechanics have been studied.Since the special functions and orthogonal polynomials appear very extensively in such problems, we emphasize on those topics as well. In this context, the classical quantum mechanical anharmonic oscillators described mathematically by the one-dimensional Schrodinger equation have been treated perturbatively in both finite and infinite intervals, corresponding to confined and non-confined systems, respectively.
 Inverse problems for a semilinear heat equation with memory Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005) In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
 The finite element method over a simple stabilizing grid applied to fluid flow problems Aydın, Selçuk Han; Tezer-Sezgin, Münevver; Department of Scientific Computing (2008) We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the...
Citation Formats
A. Özbekler, “Sturm comparison theory for impulsive differential equations,” Ph.D. - Doctoral Program, Middle East Technical University, 2005. 