Dynamic modeling, guidance, and control of homing missiles

Download
2005
Özkan, Bülent
In this study, the dynamic modeling, guidance, and control of a missile with two relatively rotating parts are dealt with. The two parts of the missile are connected to each other by means of a roller bearing. In the first part of the study, the governing differential equations of motion of the mentioned missile are derived. Then, regarding the relative rotation between the bodies, the aerodynamic model of the missile is constructed by means of the Missile Datcom software available in TÜBİTAK-SAGE. After obtaining the required aerodynamic stability derivatives using the generated aerodynamic data, the necessary transfer functions are determined based on the equations of motion of the missile. Next, the guidance laws that are considered in this study are formulated. Here, the Linear Homing Guidance and the Parabolic Homing Guidance laws are introduced as alternatives to the Proportional Navigation Guidance law. On this occasion, the spatial derivation of the Proportional Navigation Guidance law is also done. Afterwards, the roll, pitch and yaw autopilots are designed using the determined transfer functions. As the roll autopilot is constructed to regulate the roll angle of the front body of the missile which is the controlled part, the pitch and yaw autopilots are designed to realize the command signals generated by the guidance laws. The guidance commands are in the form of either the lateral acceleration components or the flight path angles of the missile. Then, the target kinematics is modeled for a typical surface target. As a complementary part of the work, the design of a target state estimator is made as a first order fading memory filter. Finally, the entire guidance and control system is built by integrating all the models mentioned above. Using the entire system model, the computer simulations are carried out using the Matlab-Simulink software and the

Suggestions

Design, modeling, guidance and control of a vertical launch surface to air missile
Tekin, Raziye; Leblebicioğlu, Mehmet Kemal; Ateşoğlu, Özgür; Department of Electrical and Electronics Engineering (2010)
The recent interests in the necessity of high maneuverability and vertical launching triggered namely the unconventional control design techniques that are effective at high angle of attack flight regimes. For most of missile configurations, this interest required thrust vector control together with conventional aerodynamic control. In this study, nonlinear modeling and dynamical analysis of a surface to air missile with both aerodynamic and thrust vector control is investigated. Aerodynamic force and momen...
Reliability analysis process and reliability improvement of an inertial measurement unit (IMU)
Ünlüsoy, Özlem; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2010)
Reliability is one of the most critical performance measures of guided missile systems. It is directly related to missile mission success. In order to have a high reliability value, reliability analysis should be carried out at all phases of the system design. Carrying out reliability analysis at all the phases of system design helps the designer to make reliability related design decisions in time and update the system design. In this study, reliability analysis process performed during the conceptual desi...
Analysis of 3-d grain burnback of solid propellant rocket motors and verification with rocket motor tests
Püskülcü, Gökay; Ulaş, Abdullah; Department of Mechanical Engineering (2004)
Solid propellant rocket motors are the most widely used propulsion systems for military applications that require high thrust to weight ratio for relatively short time intervals. Very wide range of magnitude and duration of the thrust can be obtained from solid propellant rocket motors by making some small changes at the design of the rocket motor. The most effective of these design criteria is the geometry of the solid propellant grain. So the most important step in designing the solid propellant rocket mo...
Thrust vector control by secondary injection
Erdem, Erinç; Albayrak, Kahraman; Department of Mechanical Engineering (2006)
A parametric study on Secondary Injection Thrust Vector Control (SITVC) has been accomplished numerically with the help of a commercial Computational Fluid Dynamics (CFD) code called FLUENT®. This study consists of two parts; the first part includes the simulation of three dimensional flowfield inside a test case nozzle for the selection of parameters associated with both computational grid and the CFD solver such as mesh size, turbulence model accompanied with two different wall treatment approaches, and s...
Aerodynamic optimization of missile external configurations
Arslan, Kıvanç; Özgen, Serkan; Department of Aerospace Engineering (2014)
In this thesis, design optimization methods capable of optimizing aerodynamic performances of missiles and rockets are developed. Sequential Quadratic Programming (SQP) and Random Search (RS) methods are used for optimization, whereas Missile DATCOM, which is a semi-empirical aerodynamic analysis tool, is used to calculate aerodynamic coefficients of missile configurations. As the first part of the work, capabilities and limitations of SQP and RS optimization methods are investigated on a complex test funct...
Citation Formats
B. Özkan, “Dynamic modeling, guidance, and control of homing missiles,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.