Comprehensive modelling of gas condensate relative permeability and its influence on field performance

Download
2005
Çalışgan, Hüseyin
The productivity of most gas condensate wells is reduced significantly due to condensate banking when the bottom hole pressure falls below the dew point. The liquid drop-out in these very high rate gas wells may lead to low recovery problems. The most important parameter for determining condensate well productivity is the effective gas permeability in the near wellbore region, where very high velocities can occur. An understanding of the characteristics of the high-velocity gas-condensate flow and relative permeability data is necessary for accurate forecast of well productivity. In order to tackle this goal, a series of two-phase drainage relative permeability measurements on a moderate permeability North Marmara ا1 gas well carbonate core plug sample, using a simple synthetic binary retrograde condensate fluid sample were conducted under reservoir conditions which corresponded to near miscible conditions. As a fluid system, the model of methanol/n-hexane system was used as a binary model that exhibits a critical point at ambient conditions. The interfacial tension by means of temperature and the flow rate were varied in the laboratory measurements. The laboratory experiments were repeated for the same conditions of interfacial tension and flow rate at immobile water saturation to observe the influence of brine saturation in gas condensate systems. The laboratory experiment results show a clear trend from the immiscible relative permeability to miscible relative permeability lines with decreasing interfacial tension and increasing velocity. So that, if the interfacial tension is high and the flow velocity is low, the relative permeability functions clearly curved, whereas the relative permeability curves straighten as a linear at lower values of the interfacial tension and higher values of the flow velocity. The presence of the immobile brine saturation in the porous

Suggestions

An investigation of the inertial interaction of building structures on shallow foundations with simplified soil-structure interaction analysis methods
Eyce, Bora; Bakır, Bahadır Sadık; Department of Civil Engineering (2009)
Seismic response of a structure is influenced by the inertial interaction between structure and deformable medium, on which the structure rests, due to flexibility and energy dissipation capability of the surrounding soil. The inertial interaction analyses can be performed by utilizing simplified soil-structure interaction (SSI) analyses methods. In literature, it is noted that varying soil conditions and foundation types can be modeled by using these SSI approaches with springdashpot couples having certain...
Numerical simulation of unsteady flow in an oil pipeline under various hydraulic conditions
Turan, Emrah; Bozkuş, Zafer; Department of Civil Engineering (2006)
In the present study, transient flow analyses of a long oil pipeline are performed. Transient flow conditions are initiated by typical valve operations and pump trips that may be expected during operation of such pipelines. In order to simulate transient events an existing computer program called “Stoner Pipeline Simulator” has been used for a large number of hydraulic transient conditions. The program is based on the characteristics method solution of the governing water hammer equations. Locations that ma...
Analysis of mechanical behavior of high performance cement based composite slabs under impact loading
Satıoğlu, Azize Ceren; Gülkan, Polat; Department of Civil Engineering (2009)
Studies on the behavior of steel fiber reinforced concrete (SFRC) and slurry infiltrated fibrous concrete (SIFCON) to impact loading have started in recent years. Using these relatively new materials, higher values of tensile and compressive strength can be obtained with greater fracture toughness and energy absorption capacity, and therefore they carry a considerable importance in the design of protective structures. In this thesis, computational analyses concerning impact loading effect on concrete, steel...
A study on the effect of pipe - soil relative stiffness on the behaviour of buried flexible pipes
Bircan, Mehmet; Özkan, M. Yener; Department of Civil Engineering (2010)
In this study, the effect of pipe-soil relative stiffness on the behaviour of buried flexible pipes was investigated considering the pipe size, material type, stiffness, pipe-soil and natural soil-backfill interfaces and geometry of the trench using the finite element method. For this purpose, a parametric study was conducted to examine the effect of different variables on the resulting earth loads and deformations imposed on the buried pipes. Various types of trench pipe-soil cases were analysed for a cert...
Isotropic-Kinematic Cyclic Hardening Characteristics of Plate Steels
Shakeri, Ashkan (Springer Science and Business Media LLC, 2017-03-01)
Cyclic hardening of metals is considered as one of the most important features that affects extremely the hysteresis behavior of steel structures. One approach to study this characteristic is dividing it into two components, including isotropic hardening and kinematic hardening, and defining any of these components for any type of metals by calibrated data obtained from experiments. However, the lack of these calibrated data on metals, restricts this approach. Therefore, in this paper the isotropic and kine...
Citation Formats
H. Çalışgan, “Comprehensive modelling of gas condensate relative permeability and its influence on field performance,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.