Autopilot and guidance algorithms for infrared guided misiles

Download
2006
Kılıç, Kayhan Çağlar
Guided missiles are among the most effective threats against air platforms. Aircraft and helicopter losses in the last decades were mostly due to guided missiles, 70% of which were infrared guided missiles. Today, there are as many as 500,000 shoulder-fired missiles in military arsenals around the world, whose guidance algorithms enable them to track the desired trajectories very precisely. In this thesis, main focus is on defining infrared missile guidance and control algorithms in order to study on various target-missile scenarios for the effectiveness of these algorithms. First, a mathematical model of a generic missile is given. Then the flight control system of the missile is created by using LQR and PID controllers. Different kinds of PNG algorithms applied to an infrared missile are presented. The seeker part of the infrared missile is also discussed. The effectiveness of guidance algorithms are studied based on different target missile scenarios and the responses of them to IR countermeasures are also observed. This study shows that different guidance algorithms can be used for different scenarios. If suitable algorithms are combined and suitable constants are applied, the guided missile can track the target very precisely. In addition, the seeker part has to be improved with tracking algorithms in order to recognize IR-countermeasures and not to follow them.

Suggestions

Feature set evaluation for a generic missile detection system
Avan, K. Selçuk; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2007)
Missile Detection System (MDS) is one of the main components of a self-protection system developed against the threat of guided missiles for airborne platforms. The requirements such as time critical operation and high accuracy in classification performance make the ‘Pattern Recognition’ problem of an MDS a hard task. Problem can be defined in two main parts such as ‘Feature Set Evaluation’ (FSE) and ‘Classifier’ designs. The main goal of feature set evaluation is to employ a dimensionality reduction proces...
Autopilot and guidance for anti-tank imaging infrared guided missiles
Özcan, Ali Erdem; Leblecioğlu, Kemal; Department of Electrical and Electronics Engineering (2008)
An anti-tank guided missile is a weapon system primarily designed to hit and destroy armored tanks and other armored vehicles. Developed first-generation command-guided and second-generation semi-automatic command guided missiles had many disadvantages and lower hit rates. For that reason, third generation imaging infrared fire-and-forget missile concept is very popular nowadays. In this thesis, mainly, a mathematical model for a fire-and-forget anti-tank missile is developed and a flight control autopilot ...
A rule based missile evasion method for fighter aircrafts
Sert, Muhammet; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2008)
In this thesis, a new guidance method for fighter aircrafts and a new guidance method for missiles are developed. Also, guidance and control systems of the aircraft and the missile used are designed to simulate the generic engagement scenarios between the missile and the aircraft. Suggested methods have been tested under excessive simulation studies. The aircraft guidance method developed here is a rule based missile evasion method. The main idea to develop this method stems from the maximization of the mis...
Antenna patterns for detecting slowly moving targets in two channel gmti processing
Yıldırım, Gökhan; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2010)
Ground Moving Target Indicator (GMTI) is a well-known and widely used signal processing method in airborne and spaceborne radars. In airborne radar and GMTI literature, many radar designs and signal processing techniques have been developed to increase the detection and estimation performance under heavy interference conditions. The motion of the aircraft on which the radar is mounted, high altitudes and ranges, targets with low radar cross sections and slowly moving targets complicates the problem of local...
Modeling, stability analysis and control system design of a small-sized tiltrotor uav
Çakıcı, Ferit; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2009)
Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircrafts that can carry cameras, sensors, communications equipment or other payloads. Tiltrotor UAVs provide a unique platform that fulfills the needs for ever-changing mission requirements by combining the desired features; hovering like a helicopter and reaching high forward speeds like an airplane. In this work, the conceptual design and aerodynamical model of a realizable small-sized Tiltrotor UAV is constructed, the linearized state-...
Citation Formats
K. Ç. Kılıç, “Autopilot and guidance algorithms for infrared guided misiles,” M.S. - Master of Science, Middle East Technical University, 2006.