Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural optimization of a composite wing
Download
index.pdf
Date
2006
Author
Sökmen, Özlem
Metadata
Show full item record
Item Usage Stats
306
views
924
downloads
Cite This
In this study, the structural optimization of a cruise missile wing is accomplished for the aerodynamic loads for four different flight conditions. The flight conditions correspond to the corner points of the V-n diagram. The structural analysis and optimization is performed using the ANSYS finite element program. In order to construct the flight envelope and to find the pressure distribution in each flight condition, FASTRAN Computational Fluid Dynamics program is used. The structural optimization is performed for two different wing configurations. In the first wing configuration all the structural members are made up of aluminum material. In the second wing configuration, the skin panels are all composite material and the other members are made up of aluminum material. The minimum weight design which satisfies the strength and buckling constraints are found for both wings after the optimization analyses.
Subject Keywords
Aeronautics.
,
Aeronautical Engineering.
URI
http://etd.lib.metu.edu.tr/upload/2/12607715/index.pdf
https://hdl.handle.net/11511/16123
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of a dynamic flight model of a jet trainer aircraft
Gilani, Muhaned; Özgen, Serkan; Department of Aerospace Engineering (2007)
A dynamic flight model of a jet trainer aircraft is developed in MATLAB-SIMULINK. Using a six degree of freedom mathematical model, non-linear simulation is used to observe the longitudinal and lateral-directional motions of the aircraft following a pilot input. The mathematical model is in state-space form and uses aircraft stability and control derivatives calculated from the aircraft geometric and aerodynamic characteristics. The simulation takes the changes in speed and altitude into consideration due t...
Nonlinear modeling and flight control system design of an unmanned aerial vehicle
Karakaş, Deniz; Balkan, Raif Tuna; Department of Mechanical Engineering (2007)
The nonlinear simulation model of an unmanned aerial vehicle (UAV) in MATLAB®/Simulink® environment is developed by taking into consideration all the possible major system components such as actuators, gravity, engine, atmosphere, wind-turbulence models, as well as the aerodynamics components in the 6 DOF equations of motion. Trim and linearization of the developed nonlinear model are accomplished and various related analyses are carried out. The model is validated by comparing with a similar UAV data in te...
Multidisciplinary design of an unmanned aerial vehicle wing
Sakarya, Arzu; Yaman, Yavuz; Department of Aerospace Engineering (2011)
In this thesis, the structural design, structural analysis and producibility analysis of an unmanned aerial vehicle wing were performed. Three different wing models, made of different materials, were designed. The wings were aluminum wing model and composite wing models; made of prepreg and wet lay-up. All wings have the same aerodynamic geometry and structural configuration under the same flight conditions. The structural designs of three wings were done by using Unigraphics NX. The finite element modeling...
Robust controller design for a fixed wing uav
Prach, Anna; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2009)
This study describes the design and implementation of the pitch and roll autopilots for a fixed wing unmanned vehicle. A Tactical Unmanned Aerial Vehicle (TUAV), which is designed at the Middle East Technical University (METU), is used as a platform. This work combines development of the classical and robust controllers, which are used for the pitch and roll autopilots. One of the important steps in the thesis is development of the non-linear dynamic model of the UAV, which is developed in MATLAB/Simulink e...
Structural and aeroelastic analyses of a composite tactical unmanned air vehicle
Özöztürk, Sedat; Kayran, Altan; Tamer, Aykut; Department of Aerospace Engineering (2011)
In this thesis, computational aerodynamics, structural and aeroelastic analyses of the composite tactical unmanned air vehicle which is designed and manufactured in the Department of Aerospace Engineering are performed. Verification of the structural integrity of the air vehicle is shown at the minimum maneuvering and the dive speeds at the static limit loads which are calculated by the computational aerodynamics analysis of the full aircraft model. In the current work, aerodynamic loads are re-calculated f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Sökmen, “Structural optimization of a composite wing,” M.S. - Master of Science, Middle East Technical University, 2006.