Robust controller design for a fixed wing uav

Prach, Anna
This study describes the design and implementation of the pitch and roll autopilots for a fixed wing unmanned vehicle. A Tactical Unmanned Aerial Vehicle (TUAV), which is designed at the Middle East Technical University (METU), is used as a platform. This work combines development of the classical and robust controllers, which are used for the pitch and roll autopilots. One of the important steps in the thesis is development of the non-linear dynamic model of the UAV, which is developed in MATLAB/Simulink environment. Two different strategies of the controller design imply development of the PID and controllers. Simulation results illustrate the performances of the designed controllers. Simulation is performed for the nominal model of the UAV and for the model that includes uncertainties and sensor noises.


Development of forward flight trim and longitudinal dynamic stability codes and their application to a uh-60 helicopter
Çalışkan, Sevinç; Özyörük, Yusuf; Department of Aerospace Engineering (2009)
This thesis describes the development of a series of codes for trim and longitudinal stability analysis of a helicopter in forward flight. In general, particular use of these codes can be made for parametric investigation of the effects of the external and internal systems integrated to UH-60 helicopters. However, in this thesis the trim analysis results are obtained for a clean UH-60 configuration and the results are compared with the flight test data that were acquired by ASELSAN, Inc. The first of the de...
Adaptive controller applications for rotary wing aircraft models of varying simulation fidelity
Tarımcı, Onur; Yavrucuk, İlkay; Department of Aerospace Engineering (2009)
This thesis concerns the design, analysis and testing of adaptive controllers for rotary wing aircraft, in particular helicopters. A non-linear helicopter model is developed and validated by trim and dynamic response analyses. A inner-outer loop cascade controller is designed with a trajectory generator in the most outer layer and an adaptive neural network controller is implemented to the inner loop. Controller is then challenged to carry out complex maneuvers autonomously under turbulence. Finally, the ce...
Structural design and evaluation of an adaptive camber wing
Sakarya, Evren; Seber, Güçlü; Department of Aerospace Engineering (2010)
This study presents a camber morphing concept as an alternative to existing plain flap or aileron type hinged control surfaces used in wings. Structural aspects of the concept are investigated with static nonlinear finite element analyses by using MSC Nastran. In order to assess the aerodynamic characteristics; CFD based 2D solutions are obtained using ANSYS Fluent. The camber morphing concept is applied to the full scale hingeless control surface and implemented in the adaptive camber wing. Hingeless contr...
Adaptive neural network applications on missile controller design
Sağıroğlu, Serkan; Yavrucuk, İlkay; Department of Aerospace Engineering (2009)
In this thesis, adaptive neural network controllers are designed for a high subsonic cruise missile. Two autopilot designs are included in the study using adaptive neural networks, namely an altitude hold autopilot designed for the longitudinal channel and a directional autopilot designed for heading control. Aerodynamic coefficients are obtained using missile geometry; a 5-Degree of Freedom (5-DOF) simulation model is obtained, and linearized at a single trim condition. An inverted model is used in the con...
Structural optimization of a composite wing
Sökmen, Özlem; Akgün, Mehmet A.; Department of Aerospace Engineering (2006)
In this study, the structural optimization of a cruise missile wing is accomplished for the aerodynamic loads for four different flight conditions. The flight conditions correspond to the corner points of the V-n diagram. The structural analysis and optimization is performed using the ANSYS finite element program. In order to construct the flight envelope and to find the pressure distribution in each flight condition, FASTRAN Computational Fluid Dynamics program is used. The structural optimization is perfo...
Citation Formats
A. Prach, “Robust controller design for a fixed wing uav,” M.S. - Master of Science, Middle East Technical University, 2009.