Performance analysis of elliptic curve multiplication algorithms for elliptic curve cryptography

Download
2006
Özcan, Ayça Bahar
Elliptic curve cryptography (ECC) has been introduced as a public-key cryptosystem, which offers smaller key sizes than the other known public-key systems at equivalent security level. The key size advantage of ECC provides faster computations, less memory consumption, less processing power and efficient bandwidth usage. These properties make ECC attractive especially for the next generation public-key cryptosystems. The implementation of ECC involves so many arithmetic operations; one of them is the elliptic curve point multiplication operation, which has a great influence on the performance of ECC protocols. In this thesis work, we have studied on elliptic curve point multiplication methods which are proposed by many researchers. The software implementations of these methods are developed in C programming language on Pentium 4 at 3 GHz. We have used NIST-recommended elliptic curves over prime and binary fields, by using efficient finite field arithmetic. We have then applied our elliptic curve point multiplication implementations to Elliptic Curve Digital Signature Algorithm (ECDSA), and compared different methods. The timing results are presented and comparisons with recent studies have been done.

Suggestions

Truncated Impossible and Improbable Differential Analysis of ASCON
Tezcan, Cihangir (2016-02-01)
Ascon is an authenticated encryption algorithm which is recently qualified for the second-round of the Competition for Authenticated Encryption: Security, Applicability, and Robustness. So far, successful differential, differential-linear, and cube-like attacks on the reduced-round Ascon are provided. In this work, we provide the inverse of Ascon's linear layer in terms of rotations which can be used for constructing impossible differentials. We show that Ascon's S-box contains 35 undisturbed bits and we us...
Concurrency control in distributed databases through dummy locks
Halıcı, Uğur (1990-10-01)
An optimistic scheme, called ODL, that uses dummy locks to test the validity of a transaction for concurrency control in distributed database systems is suggested. The dummy locks are long-term locks; however, they do not conflict with any other lock. By the use of long-term dummy locks, the need for the information about the write sets of validated transactions is eliminated, and during the validation test only the related sites are checked. Also, the transactions to be aborted are immediately recognized b...
NUMERICAL ANALYSIS AND TESTING OF A FULLY DISCRETE, DECOUPLED PENALTY-PROJECTION ALGORITHM FOR MHD IN ELSASSER VARIABLE
AKBAŞ, MİNE; Kaya Merdan, Songül; MOHEBUJJAMAN, Muhammed; rebholz, leo (2016-01-01)
We consider a fully discrete, efficient algorithm for magnetohydrodynamic (MHD) flow that is based on the Elsasser variable formulation and a timestepping scheme that decouples the MHD system but still provides unconditional stability with respect to the timestep. We prove stability and optimal convergence of the scheme, and also connect the scheme to one based on handling each decoupled system with a penalty-projection method. Numerical experiments are given which verify all predicted convergence rates of ...
Gröbner Basis Attack on STARK-Friendly Symmetric-Key Primitives: JARVIS, MiMC and GMiMCerf
Kara, Gizem; Yayla, Oğuz (2022-01-01)
A number of arithmetization-oriented ciphers emerge for use in advanced cryptographic protocols such as secure multi-party computation (MPC), fully homomorphic en-cryption (FHE) and zero-knowledge proofs (ZK) in recent years. The standard block ciphers like AES and the hash functions SHA2/SHA3 are proved to be efficient in software and hardware but not optimal to use in this field, for this reason, new kind of cryptographic primitives were proposed recently. However, unlike traditional ones, there is no sta...
Joint linear complexity of multisequences consisting of linear recurring sequences
Fu, Fang-Wei; Niederreiter, Harald; Özbudak, Ferruh (Springer Science and Business Media LLC, 2009-04-01)
The linear complexity of sequences is one of the important security measures for stream cipher systems. Recently, in the study of vectorized stream cipher systems, the joint linear complexity of multisequences has been investigated. In this paper, we study the joint linear complexity of multisequences consisting of linear recurring sequences. The expectation and variance of the joint linear complexity of random multisequences consisting of linear recurring sequences are determined. These results extend the ...
Citation Formats
A. B. Özcan, “Performance analysis of elliptic curve multiplication algorithms for elliptic curve cryptography,” M.S. - Master of Science, Middle East Technical University, 2006.