Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mechanical fatique and life estimation analysis of printed circuit board components
Download
index.pdf
Date
2006
Author
Genç, Cem
Metadata
Show full item record
Item Usage Stats
350
views
186
downloads
Cite This
In this thesis, vibration induced fatigue life analysis of axial leaded Tantalum & Aluminum capacitors, PDIP and SM capacitors mounted on the printed circuit boards are performed. This approach requires the finite element model, material properties and dynamic characteristics of the PCB. The young modulus of the PCB material is obtained from 3 point bending tests, resonance frequencies are obtained from modal tests and transmissibility’s of the PCB are obtained from transmissibility tests which are used as fatigue analysis inputs. Step Stress Tests are performed to obtain failure times of the tested electronic components which are also used as the numerical fatigue analysis inputs. Consecutively, fatigue analysis of a sample PCB used in military systems is aimed since it is important to compare the calculated fatigue damage to estimated life limits in order to determine which component(s), if necessary, must be moved to positions of lower damage . For this purpose, power PCB of the power distribution unit used in Leopard 1 battle tank is examined. Numerical fatigue analysis coupled with accelerated life test whose profile is convenient to military platforms is performed. Furthermore, the effects of “eccobond” and silicone on the fatigue life of the components are also surveyed since these techniques are common in electronic packaging. In addition, mean-time-to-failure values are obtained for the tested components by using Weibull distribution. Finally, sensitivity analysis is performed to indicate the effect of certain parameters on the fatigue life of a sample axial leaded capacitor.
Subject Keywords
Mechanical Engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12607473/index.pdf
https://hdl.handle.net/11511/16365
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Design and analysis of filament wound composite tubes
Balya, Bora; Parnas, Kemal Levend; Department of Mechanical Engineering (2004)
This thesis is for the investigation of the design and analysis processes of filament wound composite tubes under combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as multi layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. W...
Performance evaluation of piezoelectric sensor/actuator on active vibration control of a smart beam
Şahin, Melin (SAGE Publications, 2011-01-01)
In this paper the performance of a piezoelectric sensor/actuator pair and self-sensing piezoelectric actuator on the investigation of vibration characteristics and active vibration control of a smart beam are presented. The performance of piezoelectric patches on actuation and sensing is evaluated by investigating the vibration characteristics of the smart beam via various excitation mechanisms and transduction systems. For active vibration suppression of the smart beam, robust controllers are designed and ...
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
Direct numerical simulation of liquid flow in a horizontal microchannel
Kükrer, Cenk Evren; Tarı, İlker; Department of Mechanical Engineering (2005)
Numerical simulations of liquid flow in a micro-channel between two horizontal plates are performed. The channel is infinite in streamwise and spanwise directions and its height is taken as m, which falls within the dimension ranges of microchannels. The Navier-Stokes equations with the addition of Brinkman number (Br) to the energy equation are used as the governing equations and spectral methods based approach is applied to obtain the required accuracy to handle liquid flow in the microchannel. It is know...
Experimental investigation and numerical analysis of microchannel heatsinks for phased array radar cooling application
Alpsan, Emrah; Sert, Cüneyt; Department of Mechanical Engineering (2008)
Experimental measurements and numerical simulations have been performed on copper and aluminum microchannel heatsinks of 300, 420, 500, and 900 μm channel widths. The heatsinks have been designed specifically for use with T/R (transmit/receive) module cooling applications of military phased array radars. An analytical calculation was also performed to aid in the design methodology. Distilled water was used as the coolant with flow rates ranging from 0.50 lpm (liters per minute) to 1.00 lpm. Local heat fluxe...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Genç, “Mechanical fatique and life estimation analysis of printed circuit board components,” M.S. - Master of Science, Middle East Technical University, 2006.