Six-legged walking machine : the robot-EA308

Erden, Mustafa Suphi
The work presented in this thesis aims to make contribution to the understanding and application of six-legged statically stable walking machines in both theoretical and practical levels. In this thesis five pieces of work, performed with and for the three-joint six-legged Robot-EA308, are presented: 1) Standard gaits, which include the well-known wave gaits, are defined and a stability analysis, in the sense of static stable walking, is performed on an analytical level. Various definitions are given; theorems are stated and proved. 2) A free gait generation algorithm with reinforcement learning is developed. Its facilities of stability improvement, smooth speed changes, and adaptation in case of a rear-leg deficiency with learning of five-legged walking are experimented in real-time on the Robot-EA308. 3) Trajectory optimization and controller design is performed for the protraction movement of a three-joint leg. The trajectory generated by the controller is demonstrated with the Robot-EA308. 4) The full kinematic-dynamic formulation of a three-joint six-legged robot is performed with the joint-torques being the primary variables. It is demonstrated that the proposed torque distribution scheme, rather than the conventional force distribution, results in an efficient distribution of required forces and moments to the supporting legs. 5) An analysis of energy efficiency is performed for wave gaits. The established strategies for determination of gait parameters for an efficient walk are justified using the Robot-EA308.


A programmable control unit for industrial applications
Güngör, Mustafa Kemal; Hızal, Mirzahan; Department of Electrical and Electronics Engineering (2003)
In this thesis, the automation of the long term and cyclic processes by using a programmable control unit is aimed. To achieve this goal, timing relays and various microcontrollers are investigated. PIC microcontroller is chosen to implement the control unit due to its advantages like high speed, Harvard and RISC architecture, low cost and flexibility for programming. Theory of the PIC microcontrollers is studied and a controller unit to be used in the mentioned processes is designed. Some features are adde...
3-D humanoid gait simulation using an optimal predictive control
Özyurt, Gökhan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2005)
In this thesis, the walking of a humanoid system is simulated applying an optimal predictive control algorithm. The simulation is built using Matlab and Simulink softwares. Four separate physical models are developed to represent the single support and the double support phases of a full gait cycle. The models are three dimensional and their properties are analogous to the human̕s. In this connection, the foot models in the double support phases include an additional joint which connects the toe to the foot...
"High precision CNC motion control"
Ay, Gökçe Mehmet; Dölen, Melik; Department of Mechanical Engineering (2004)
This thesis focuses on the design of an electrical drive system for the purpose of high precision motion control. A modern electrical drive is usually equipped with a current regulated voltage source along with powerful motion controller system utilizing one or more micro-controllers and/or digital signal processors (DSPs). That is, the motor drive control is mostly performed by a dedicated digital-motion controller system. Such a motor drive mostly interfaces with its host processor via various serial comm...
Design of an integrated hardware-in-the-loop simulation system
Üşenmez, Serdar; Koku, A. Buğra; Department of Mechanical Engineering (2010)
This thesis aims to propose multiple methods for performing a hardware-in-the-loop simulation, providing the hardware and software tools necessary for design and execution. For this purpose, methods of modeling commonly encountered dynamical system components are explored and techniques suitable for calculating the states of the modeled system are presented. Modules and subsystems that enable the realization of a hardware-in-the-loop simulation application and its interfacing with external controller hardwa...
Modeling and simulation of a maneuvering ship
Pakkan, Sinan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
This thesis documents the studies conducted in deriving a mathematical model representing the dynamics of a maneuvering ship to be implemented as part of an interactive real-time simulation system, as well as the details and results of the implementation process itself. Different effects on the dynamics of ship motions are discussed separately, meaning that the effects are considered to be applied to the system one at a time and they are included in the model simply by the principle of superposition. The mo...
Citation Formats
M. S. Erden, “Six-legged walking machine : the robot-EA308,” Ph.D. - Doctoral Program, Middle East Technical University, 2006.