Hide/Show Apps

Design of a ZVS QRC converter for educational test bench

Şengüzel, İsmail
In this thesis, the conventional pulse-width modulated (PWM) and zero-voltage switching (ZVS) quasi-resonant buck converters are analyzed and a variable-frequency control technique is proposed to regulate the output voltage due to the immediate input line and load changes. The quasi-resonant technique provides favorable switching conditions for active switch to reduce switching losses and electromagnetic interference (EMI). The method is based on shaping the voltage across the active switch in quasisinusoidal fashion and the switching action occurs with nearly zero voltage across the active switch. This requires only two additional components to the conventional PWM buck converter. The proposed quasi-resonant converter is capable of operating in megahertz range with a significant improvement in performance and power density. Detailed analytic and small-signal models of the ZVS quasi-resonant buck converter are established and the switching behavior is investigated in order to provide nearly zerovoltage turn-on. The performance of the ZVS quasi-resonant technique is verified with the computer simulations. The results are compared with the experiments in the laboratory involving both the open-loop and closed-loop operations. The detailed experiment procedure is added to use this converter for educational purposes.