Simple models for drift estimates in framed structures during near-field earthquakes

Download
2007
Erdoğan, Burcu
Maximum interstory drift and the distribution of this drift along the height of the structure are the main causes of structural and nonstructural damage in frame type buildings subjected to earthquake ground motions. Estimation of maximum interstory drift ratio is a good measure of the local response of buildings. Recent earthquakes have revealed the susceptibility of the existing building stock to near-fault ground motions characterized by a large, long-duration velocity pulse. In order to find rational solutions for the destructive effects of near fault ground motions, it is necessary to determine drift demands of buildings. Practical, applicable and accurate methods that define the system behavior by means of some key parameters are needed to assess the building performances quickly instead of detailed modeling and calculations. In this study, simple equations are proposed in order for the determination of the elastic interstory drift demand produced by near fault ground motions on regular and irregular steel frame structures. The proposed equations enable the prediction of maximum elastic ground story drift ratio of shear frames and the maximum elastic ground story drift ratio and maximum elastic interstory drift ratio of steel moment resisting frames. In addition, the effects of beam to column stiffness ratio, soft story factor, stiffness distribution coefficient, beam-to-column capacity ratio, seismic force reduction factor, ratio of pulse period to fundamental period, regular story height and number of stories on elastic and inelastic interstory drift demands are investigated in detail. An equation for the ratio of maximum inelastic interstory drift ratio to maximum elastic interstory drift ratio developed for a representative case is also presented.

Suggestions

Low cycle fatigue effects in the damage caused by the Marmara earthquake of August 17, 1999
Acar, Fikri; Gülkan, Polat; Department of Civil Engineering (2005)
This study mainly addresses the problem of estimating the prior earthquake damage on the response of reinforced concrete structures to future earthquakes. The motivation has arisen from the heavy damages or collapses that occurred in many reinforced concrete structures following two major earthquakes that recently occurred in the Marmara Region, Turkey. The analysis tool employed for this purpose is the package named IDARC2D. Deterioration parameters of IDARC's hysteretic model have been calibrated using a ...
Fragility based assessment of lowrise and midrise reinforced concrete frame buildings in turkey using Düzce damage database
Özün, Ahsen; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
In this study, the seismic fragility assessment of low-rise and mid-rise reinforced concrete frame buildings which constitute approximately 75 % of the total building stock in Turkey is investigated to quantify the earthquake risk. The inventory used in this study is selected from Düzce damage database which was compiled after the devastating 1999 earthquakes in the Marmara region. These buildings are not designed according to the current code regulations and the supervision in the construction phase is not...
Quantifying seismic design criteria for concrete buildings
Tüken, Ahmet; Atımtay, Ergin; Department of Civil Engineering (2004)
The amount of total and relative sway of a framed or a composite (frame-shear wall) building is of utmost importance in assessing the seismic resistance of the building. Therefore, the design engineer must calculate the sway profile of the building several times during the design process. However, it is not a simple task to calculate the sway of a three-dimensional structure. Of course, computer programs can do the job, but developing the three-dimensional model becomes necessary, which is obviously tedious...
A detailed analysis for evaluation of the degradation characteristics of simple structural systems
Kurtman, Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load ...
Analytical modeling of reinforced concrete beam-to-column connections
Ünal, Mehmet; Burak Bakır, Burcu; Department of Civil Engineering (2010)
Prior studies indicated that beam-to-column connections of reinforced concrete (RC) moment resisting frame structures experience considerable deformations under earthquake loading and these deformations have a major contribution to story drift of the building. In current analysis and design applications, however, the connection regions are generally modeled as rigid zones and the inelastic behavior of the joint is not taken into account. This assumption gives rise to an underestimation of the story drifts a...
Citation Formats
B. Erdoğan, “Simple models for drift estimates in framed structures during near-field earthquakes,” M.S. - Master of Science, Middle East Technical University, 2007.