Quantifying seismic design criteria for concrete buildings

Tüken, Ahmet
The amount of total and relative sway of a framed or a composite (frame-shear wall) building is of utmost importance in assessing the seismic resistance of the building. Therefore, the design engineer must calculate the sway profile of the building several times during the design process. However, it is not a simple task to calculate the sway of a three-dimensional structure. Of course, computer programs can do the job, but developing the three-dimensional model becomes necessary, which is obviously tedious and time consuming. An easy to apply analytical method is developed, which enables the determination of sway profiles of framed and composite buildings subject to seismic loading. Various framed and composite three-dimensional buildings subject to lateral seismic loads are solved by SAP2000 and the proposed analytical method. The sway profiles are compared and found to be in very good agreement. In most cases, the amount of error involved is less than 5 %. The analytical method is applied to determine sway magnitudes at any desired elevation of the building, the relative sway between two consecutive floors, the slope at any desired point along the height and the curvature distribution of the building from foundation to roof level. After sway and sway-related properties are known, the requirements of the Turkish Earthquake Code can be evaluated and / or checked. By using the analytical method, the amount of shear walls necessary to satisfy Turkish Earthquake Code requirements are determined. Thus, a vital design question has been answered, which up till present time, could only be met by rough empirical guidelines. A mathematical derivation is presented to satisfy the strength requirement of a three-dimensional composite building subject to seismic loading. Thus, the occurrence of shear failure before moment failure in the building is securely avoided. A design


Fragility based assessment of lowrise and midrise reinforced concrete frame buildings in turkey using Düzce damage database
Özün, Ahsen; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
In this study, the seismic fragility assessment of low-rise and mid-rise reinforced concrete frame buildings which constitute approximately 75 % of the total building stock in Turkey is investigated to quantify the earthquake risk. The inventory used in this study is selected from Düzce damage database which was compiled after the devastating 1999 earthquakes in the Marmara region. These buildings are not designed according to the current code regulations and the supervision in the construction phase is not...
Analytical modeling of reinforced concrete beam-to-column connections
Ünal, Mehmet; Burak Bakır, Burcu; Department of Civil Engineering (2010)
Prior studies indicated that beam-to-column connections of reinforced concrete (RC) moment resisting frame structures experience considerable deformations under earthquake loading and these deformations have a major contribution to story drift of the building. In current analysis and design applications, however, the connection regions are generally modeled as rigid zones and the inelastic behavior of the joint is not taken into account. This assumption gives rise to an underestimation of the story drifts a...
Simple models for drift estimates in framed structures during near-field earthquakes
Erdoğan, Burcu; Gülkan, Polat; Department of Civil Engineering (2007)
Maximum interstory drift and the distribution of this drift along the height of the structure are the main causes of structural and nonstructural damage in frame type buildings subjected to earthquake ground motions. Estimation of maximum interstory drift ratio is a good measure of the local response of buildings. Recent earthquakes have revealed the susceptibility of the existing building stock to near-fault ground motions characterized by a large, long-duration velocity pulse. In order to find rational so...
Seismic vulnerability, behavior and design of tunnel form building structures
Balkaya, C; Kalkan, E (Elsevier BV, 2004-12-01)
Multi-story reinforced concrete tunnel form buildings are one of the common structural types in regions prone to high seismic risk due to the buildings inherent earthquake resistance and ease of construction. Despite their good performance during earthquakes in 1999 in Turkey, and abundance of such structures scattered worldwide, current seismic codes and design provisions provide insufficient guidelines for their seismic design. As a compensatory measure, a series of modal and nonlinear static analyses are...
Component based seismic vulnerability assessment procedure for rc buildings
Erduran, Emrah; Yakut, Ahmet; Department of Civil Engineering (2005)
A detailed seismic performance assessment procedure has been developed for reinforced concrete frame buildings with masonry in-fill walls and reinforced concrete frames including shear walls. The procedure uses member damage functions, in terms of inter-story drift ratios, developed for the primary components: columns, beams, in-fill walls and shear walls. Analytical investigations carried out to determine the influence of a number of parameters on the damageability of components were combined with existing...
Citation Formats
A. Tüken, “Quantifying seismic design criteria for concrete buildings,” Ph.D. - Doctoral Program, Middle East Technical University, 2004.