Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy-efficient routing to maximize network lifetime in wireless sensor networks
Download
index.pdf
Date
2007
Author
Zengin, Aslı
Metadata
Show full item record
Item Usage Stats
156
views
70
downloads
Cite This
With various new alternatives of low-cost sensor devices, there is a strong demand for large scale wireless sensor networks (WSN). Energy efficiency in routing is crucial for achieving the desired levels of longevity in these networks. Existing routing algorithms that do not combine information on transmission energies on links, residual energies at nodes, and the identity of data itself, cannot reach network capacity. A proof-of-concept routing algorithm that combines data aggregation with the minimum-weight path routing is studied in this thesis work. This new algorithm can achieve much larger network lifetime when there is redundancy in messages to be carried by the network, a practical reality in sensor network applications.
Subject Keywords
Computer Engineering.
,
ZA Research.
URI
http://etd.lib.metu.edu.tr/upload/12608626/index.pdf
https://hdl.handle.net/11511/16856
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Duty cycle control in wireless sensor networks
Yılmaz, Mine; Bilgen, Semih; Department of Electrical and Electronics Engineering (2007)
Recent advances in wireless communication and micro-electro-mechanical systems (MEMS) have led to the development of implementation of low-cost, low power, multifunctional sensor nodes. These sensor node are small in size and communicate untethered in short distances. The nodes in sensor networks have limited battery power and it is not feasible or possible to recharge or replace the batteries, therefore power consumption should be minimized so that overall network lifetime will be increased. In order to mi...
Lifetime analysis for wireless sensor networks
Öğünlü, Bilal; Bazlamaçcı, Cüneyt Fehmi; Department of Electrical and Electronics Engineering (2004)
Sensor technologies are vital today in gathering information about certain environments and wireless sensor networks are getting more widespread use everyday. These networks are characterized by a number of sensor nodes deployed in the field for the observation of some phenomena. Due to the limited battery capacity in sensor nodes, energy efficiency is a major and challenging problem in such power-constrained networks. Some of the network design parameters have a direct impact on the network̕s lifetime. The...
Lifetime extension for surveillance wireless sensor networks with intelligent redeployment
Kosar, Rabun; Bojaxhiu, Ilir; Onur, Ertan; Ersoy, Cem (Elsevier BV, 2011-11-01)
For wireless sensor networks (WSNs), uneven energy consumption is a major problem. A direct consequence of this is the energy hole problem, formation of sensing voids within the network field due to battery depleted sensors in the corresponding region. Hole formations are inherent in the network topology, yet it is possible to develop strategies to delay the hole formations to later stages of the network operation and essentially extend the network lifetime without sensing quality loss. In this work, we ini...
Delay aware reliable transport in wireless sensor networks
Gungor, Vehbi C.; Akan, Oezguer B. (Wiley, 2007-10-01)
Wireless sensor networks (WSN) are event-based systems that rely on the collective effort of several sensor nodes. Reliable event detection at the sink is based on collective information provided by the sensor nodes and not on any individual sensor data. Hence, conventional end-to-end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Moreover, the reliability objective of WSN must be achieved within a certain real-time delay b...
Energy-aware routing algorithms for wireless ad hoc networks with heterogeneous power supplies
Vazifehdan, Javad; Prasad, R. Venkatesha; Onur, Ertan; Niemegeers, Ignas (Elsevier BV, 2011-10-27)
Although many energy-aware routing schemes have been proposed for wireless ad hoc networks, they are not optimized for networks with heterogeneous power supplies, where nodes may run on battery or be connected to the mains (grid network). In this paper, we propose several energy-aware routing algorithms for such ad hoc networks. The proposed algorithms feature directing the traffic load dynamically towards mains-powered devices keeping the hop count of selected routes minimal. We unify these algorithms into...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Zengin, “Energy-efficient routing to maximize network lifetime in wireless sensor networks,” M.S. - Master of Science, Middle East Technical University, 2007.