Hide/Show Apps

Performance measurement in multi objective combinatorial optimization

Download
2007
Bozkurt, Bilge
In this study we address the problem of measuring the quality of different sets of nondominated solutions obtained by different approaches in multi objective combinatorial optimization (MOCO). We propose a new measure that quantitatively compares the sets of nondominated solutions, without needing an efficient frontier. We develop the measure for bi-criteria and more than two criteria cases separately. Rather than considering only the supported solutions in the evaluation, the measure captures both supported and unsupported solutions through utilizing weighted Tchebycheff function characteristics. We also adapt this method for determining the neighborhood relations on the weight space for both bi-criteria and more than two criteria cases. We check the consistency of the neighborhood assumption on the objective space with the neighborhood relations on the weight space by this measure and obtain highly good results.