New approaches for performance evaluation using data envelopment analysis

Download
2004
Özpeynirci, Nail Özgür
Data Envelopment Analysis (DEA) assigns efficiency values to decision making units (DMU) in a given period by comparing the outputs with the inputs. In many applications, inputs and outputs of DMUs are monitored over time. There might be a time lag between the consumption of inputs and production of outputs. We develop approaches that aim to capture the time lag between the outputs and the inputs in assigning the efficiency values to DMUs. We present computational results on randomly generated problems as well as on an application to R&D institutes of the Scientific and Technical Research Council of Turkey (TÜBITAK).

Suggestions

Performance measurement in multi objective combinatorial optimization
Bozkurt, Bilge; Köksalan, Murat; Department of Industrial Engineering (2007)
In this study we address the problem of measuring the quality of different sets of nondominated solutions obtained by different approaches in multi objective combinatorial optimization (MOCO). We propose a new measure that quantitatively compares the sets of nondominated solutions, without needing an efficient frontier. We develop the measure for bi-criteria and more than two criteria cases separately. Rather than considering only the supported solutions in the evaluation, the measure captures both supporte...
An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation
Selcuk, A. M.; Öktem, Hüseyin Avni (Elsevier BV, 2009-08-01)
Inference of dynamical systems using piecewise linear models is a promising active research area. Most of the investigations in this field have been stimulated by the research in functional genomics. In this article we study the inference problem in piecewise linear systems. We propose first identifying the state transitions by detecting the jumps of the derivative estimates, then finding the guard conditions of the state transitions (thresholds) from the values of the state variables at the state transitio...
Efficient Three-Layer Iterative Solutions of Electromagnetic Problems Using the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Ergül, Özgür Salih (2017-05-19)
We present a three-layer iterative algorithm for fast and efficient solutions of electromagnetic problems formulated with surface integral equations. The strategy is based on nested iterative solutions employing the multilevel fast multipole algorithm and its approximate forms. We show that the three-layer mechanism significantly reduces solution times, while it requires no additional memory as opposed to algebraic preconditioners. Numerical examples involving three-dimensional scattering problems are prese...
An online sequential algorithm for the estimation of transition probabilities forjump Markov linear systems
Orguner, Umut (Elsevier BV, 2006-10-01)
This paper describes a new method to estimate the transition probabilities associated with a jump Markov linear system. The new algorithm uses stochastic approximation type recursions to minimize the Kullback-Leibler divergence between the likelihood function of the transition probabilities and the true likelihood function. Since the calculation of the likelihood function of the transition probabilities is impossible, an incomplete data paradigm, which has been previously applied to a similar problem for hi...
An Efficient Formula Synthesis Method with Past Signal Temporal Logic
Ergurtuna, Mert; Aydın Göl, Ebru (2019-01-01)
In this work, we propose a novel method to find temporal properties that lead to the unexpected behaviors from labeled dataset. We express these properties in past time Signal Temporal Logic (ptSTL). First, we present a novel approach for finding parameters of a template ptSTL formula, which extends the results on monotonicity based parameter synthesis. The proposed method optimizes a given monotone criteria while bounding an error. Then, we employ the parameter synthesis method in an iterative unguided for...
Citation Formats
N. Ö. Özpeynirci, “New approaches for performance evaluation using data envelopment analysis,” M.S. - Master of Science, Middle East Technical University, 2004.